These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 6312317)

  • 21. Yeast protein phosphatase active with acidic ribosomal proteins.
    Pilecki M; Grzyb A; Zień P; Sekuła O; Szyszka R
    J Basic Microbiol; 2000; 40(4):251-60. PubMed ID: 10986671
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and degradation of interconvertible enzymes. Kinetic equations of a model system.
    Gibson DM; Steinrauf JH; Parker RA
    J Bioenerg Biomembr; 1984 Dec; 16(5-6):433-9. PubMed ID: 6100374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial modulation: reversible phosphorylation takes center stage?
    Pagliarini DJ; Dixon JE
    Trends Biochem Sci; 2006 Jan; 31(1):26-34. PubMed ID: 16337125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interconvertible enzyme cascades in cellular regulation.
    Chock PB; Rhee SG; Stadtman ER
    Annu Rev Biochem; 1980; 49():813-43. PubMed ID: 6105843
    [No Abstract]   [Full Text] [Related]  

  • 25. Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established.
    Deutscher J; Saier MH
    J Mol Microbiol Biotechnol; 2005; 9(3-4):125-31. PubMed ID: 16415586
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Covalent modification of phosphofructokinase by phosphorylation--dephosphorylation.
    Söling HD; Brand IA
    Curr Top Cell Regul; 1981; 20():107-38. PubMed ID: 6276080
    [No Abstract]   [Full Text] [Related]  

  • 27. Reversible protein phosphorylation. Preface.
    Shenolikar S
    Prog Mol Biol Transl Sci; 2012; 106():xv-xvii. PubMed ID: 22340726
    [No Abstract]   [Full Text] [Related]  

  • 28. Defective sarcolemmal phosphorylation associated with noninsulin-dependent diabetes.
    Allo SN; Schaffer SW
    Biochim Biophys Acta; 1990 Apr; 1023(2):206-12. PubMed ID: 2158349
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Conformations of the coenzymes and the allosteric activator, ADP, bound to NAD(+)-dependent isocitrate dehydrogenase from pig heart.
    Ehrlich RS; Colman RF
    Biochemistry; 1990 May; 29(21):5179-87. PubMed ID: 2378874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The phosphorylation of Escherichia coli isocitrate dehydrogenase in intact cells.
    Borthwick AC; Holms WH; Nimmo HG
    Biochem J; 1984 Sep; 222(3):797-804. PubMed ID: 6385963
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two NAD+-isocitrate dehydrogenase forms in Phycomyces blakesleeanus. Induction in response to acetate growth and characterization, kinetics, and regulation of both enzyme forms.
    Alvarez-Villafañe E; Soler J; del Valle P; Busto F; de Arriaga D
    Biochemistry; 1996 Apr; 35(15):4741-52. PubMed ID: 8664264
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of isocitrate dehydrogenase by phosphorylation in Escherichia coli K-12 and a simple method for determining the amount of inactive phosphoenzyme.
    Edlin JD; Sundaram TK
    J Bacteriol; 1989 May; 171(5):2634-8. PubMed ID: 2651411
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of ATP-Mg-dependent protein phosphatase.
    Merlevede W; Vandenheede JR; Goris J; Yang SD
    Curr Top Cell Regul; 1984; 23():177-215. PubMed ID: 6327192
    [No Abstract]   [Full Text] [Related]  

  • 34. Regulation of acetate metabolism by protein phosphorylation in enteric bacteria.
    Cozzone AJ
    Annu Rev Microbiol; 1998; 52():127-64. PubMed ID: 9891796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic analysis of NAD(+)-isocitrate dehydrogenase with altered isocitrate binding sites: contribution of IDH1 and IDH2 subunits to regulation and catalysis.
    Cupp JR; McAlister-Henn L
    Biochemistry; 1993 Sep; 32(36):9323-8. PubMed ID: 8369302
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Developmental changes in the cyclic AMP-dependent phosphorylation and dephosphorylation of a protein endogenous to murine brain and liver.
    Malkinson AM
    Biochem Biophys Res Commun; 1977 Sep; 78(1):91-8. PubMed ID: 199176
    [No Abstract]   [Full Text] [Related]  

  • 37. Phosphatases in plants.
    Schweighofer A; Meskiene I
    Methods Mol Biol; 2015; 1306():25-46. PubMed ID: 25930691
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of the effects of Ca2+ on the intramitochondrial Ca2+-sensitive enzymes from rat liver and within intact rat liver mitochondria.
    McCormack JG
    Biochem J; 1985 Nov; 231(3):581-95. PubMed ID: 3000355
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Unlimited multistability in multisite phosphorylation systems.
    Thomson M; Gunawardena J
    Nature; 2009 Jul; 460(7252):274-7. PubMed ID: 19536158
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reversible phosphorylation regulation of NADPH-linked polyol dehydrogenase in the freeze-avoiding gall moth, Epiblema scudderiana: role in glycerol metabolism.
    Holden HA; Storey KB
    Arch Insect Biochem Physiol; 2011 May; 77(1):32-44. PubMed ID: 21400585
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.