These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 631235)
1. The distribution of soluble, insoluble and high molecular weight fractions of senile normal and cataractous human lenses as a function of internal calcium. Bushell AR; Duncan G Exp Eye Res; 1978 Feb; 26(2):223-6. PubMed ID: 631235 [No Abstract] [Full Text] [Related]
2. Characterization of water-insoluble proteins in normal and cataractous human lens. Kamei A Jpn J Ophthalmol; 1990; 34(2):216-24. PubMed ID: 2214364 [TBL] [Abstract][Full Text] [Related]
3. Protein changes in the human lens during development of senile nuclear cataract. Kramps HA; Hoenders HJ; Wollensak J Biochim Biophys Acta; 1976 May; 434(1):32-43. PubMed ID: 938670 [TBL] [Abstract][Full Text] [Related]
4. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses. Harrington V; Srivastava OP; Kirk M Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670 [TBL] [Abstract][Full Text] [Related]
5. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Srivastava K; Chaves JM; Srivastava OP; Kirk M Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688 [TBL] [Abstract][Full Text] [Related]
6. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses. Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743 [TBL] [Abstract][Full Text] [Related]
7. On the calcium concentration of cataractous and normal human lenses and protein fractions of cataractous lenses. Jedziniak JA; Nicoli DF; Yates EM; Benedek GB Exp Eye Res; 1976 Sep; 23(3):325-32. PubMed ID: 976373 [No Abstract] [Full Text] [Related]
8. High molecular weight aggregate from cataractous and normal human lenses: characterization by antisera to lens crystallins. Kodama T; Wong R; Takemoto L Jpn J Ophthalmol; 1988; 32(2):159-65. PubMed ID: 3184549 [TBL] [Abstract][Full Text] [Related]
9. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses. Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090 [TBL] [Abstract][Full Text] [Related]
10. Distribution of water-soluble crystallins in microsectioned cataractous lenses from one hundred Egyptian patients. Bours J; el-Layeh AA; Emarah MH; Rink H Ophthalmic Res; 1995; 27 Suppl 1():54-61. PubMed ID: 8577463 [TBL] [Abstract][Full Text] [Related]
11. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
12. Distribution of non-diffusible calcium and sodium in normal and cataractous human lenses. Duncan G; van Heyningen R Exp Eye Res; 1977 Aug; 25(2):183-93. PubMed ID: 913509 [No Abstract] [Full Text] [Related]
13. Studies on lens proteins of mice with hereditary cataract. I. Comparative studies on the chemical and immunochemical properties of the soluble proteins of cataractous and normal mouse lenses. Wada E; Sugiura T; Nakamura H; Tsumita T Biochim Biophys Acta; 1981 Feb; 667(2):251-9. PubMed ID: 7213804 [TBL] [Abstract][Full Text] [Related]
14. [Changes in water-soluble, urea-soluble and membrane intrinsic proteins in human senile cataract]. Zhao HR; Hu SQ; Ren XH Zhonghua Yan Ke Za Zhi; 1994 May; 30(3):186-8. PubMed ID: 7842996 [TBL] [Abstract][Full Text] [Related]
15. Advanced glycation end products in human senile and diabetic cataractous lenses. Zarina S; Zhao HR; Abraham EC Mol Cell Biochem; 2000 Jul; 210(1-2):29-34. PubMed ID: 10976755 [TBL] [Abstract][Full Text] [Related]
16. The state of sulphydryl groups in proteins isolated from normal and cataractous human lenses. Hum TP; Augusteyn RC Curr Eye Res; 1987 Sep; 6(9):1091-101. PubMed ID: 3665565 [TBL] [Abstract][Full Text] [Related]
17. Racemization in human lens: evidence of rapid insolubilization of specific polypeptides in cataract formation. Garner WH; Spector A Proc Natl Acad Sci U S A; 1978 Aug; 75(8):3618-20. PubMed ID: 278977 [TBL] [Abstract][Full Text] [Related]
18. Protein alterations in age-related cataract associated with a persistent hyaloid vascular system in senescence-accelerated mouse (SAM). Ashida Y; Takeda T; Hosokawa M Exp Eye Res; 1994 Oct; 59(4):467-73. PubMed ID: 7859822 [TBL] [Abstract][Full Text] [Related]
19. Non-tryptophan fluorescence of crystallins from normal and cataractous human lenses. Bessems GJ; Keizer E; Wollensak J; Hoenders HJ Invest Ophthalmol Vis Sci; 1987 Jul; 28(7):1157-63. PubMed ID: 3596993 [TBL] [Abstract][Full Text] [Related]
20. EM immunolocalization of alpha-crystallins: association with the plasma membrane from normal and cataractous human lenses. Boyle DL; Takemoto L Curr Eye Res; 1996 May; 15(5):577-82. PubMed ID: 8670759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]