These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 6312745)

  • 1. Beta 2-adrenergic control of transcapillary fluid absorption and plasma volume in hemorrhage.
    Hillman J
    Acta Physiol Scand Suppl; 1983; 516():1-62. PubMed ID: 6312745
    [No Abstract]   [Full Text] [Related]  

  • 2. Hormonal and neurogenic adrenergic control of the fluid transfer from skeletal muscle to blood during hemorrhage.
    Hillman J; Lundvall J
    Acta Physiol Scand; 1981 Jul; 112(3):271-80. PubMed ID: 6270957
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beta 2-adrenergic attenuation of capillary pressure autoregulation during haemorrhagic hypotension, a mechanism promoting transcapillary fluid absorption in skeletal muscle.
    Maspers M; Björnberg J
    Acta Physiol Scand; 1991 May; 142(1):11-20. PubMed ID: 1678909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Further studies on beta-adrenergic control of transcapillary fluid absorption from skeletal muscle to blood during hemorrhage.
    Hillman J
    Acta Physiol Scand; 1981 Jul; 112(3):281-6. PubMed ID: 6270958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of beta-adrenoceptors in the microcirculation of skeletal muscle.
    Hillman J; Lundvall J
    Acta Physiol Scand; 1981 Sep; 113(1):67-71. PubMed ID: 6274164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid transfer from skeletal muscle to blood during hemorrhage. Importance of beta adrenergic vascular mechanisms.
    Lundvall J; Hillman J
    Acta Physiol Scand; 1978 Apr; 102(4):450-8. PubMed ID: 207084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osmolar control of the circulation in hemorrhagic hypotension. An experimental study in the cat.
    Järhult J
    Acta Physiol Scand Suppl; 1975; 423():1-84. PubMed ID: 241204
    [No Abstract]   [Full Text] [Related]  

  • 8. beta 2-Adrenergic control of plasma volume in hemorrhage.
    Hillman J; Gustafsson D; Lundvall J
    Acta Physiol Scand; 1982 Oct; 116(2):175-80. PubMed ID: 6132519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of the changes in systemic hemodynamics and in the skeletal muscle microcirculatory bed in traumatic shock and blood loss].
    Dzhurko BI; Pronin OV
    Patol Fiziol Eksp Ter; 1980; (5):16-20. PubMed ID: 7422366
    [No Abstract]   [Full Text] [Related]  

  • 10. Beta 2-adrenergic vascular control in hemorrhage and its influence on cardiac performance.
    Gustafsson D; Lundvall J
    Am J Physiol; 1984 Mar; 246(3 Pt 2):H351-9. PubMed ID: 6142656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hemorrhagic hypotension on cerebral blood flow and perfused capillaries in newborn pigs.
    Anwar M; Agarwal R; Rashduni D; Weiss HR
    Can J Physiol Pharmacol; 1996 Feb; 74(2):157-62. PubMed ID: 8723028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in catecholamine and angiotensin levels in the cat and dog during hemorrhage.
    Hall RC; Hodge RL
    Am J Physiol; 1971 Nov; 221(5):1305-9. PubMed ID: 4330892
    [No Abstract]   [Full Text] [Related]  

  • 13. [Regional and tissue blood flow in the hindlimbs of cats with acute blood loss].
    Dzhurko BI
    Patol Fiziol Eksp Ter; 1983; (2):22-5. PubMed ID: 6856349
    [No Abstract]   [Full Text] [Related]  

  • 14. [Physiopathological studies of the microcirculation--with special reference to the mechanism of hemorrhage and coagulation].
    Tsuchiya M; Kamisaka Y; Oda M
    Nihon Ishikai Zasshi; 1970 Dec; 64(11):1286-99. PubMed ID: 5530861
    [No Abstract]   [Full Text] [Related]  

  • 15. Isoflurane inhibits compensatory intravascular volume expansion after hemorrhage in sheep.
    Hahn RG; Brauer L; Rodhe P; Svensén CH; Prough DS
    Anesth Analg; 2006 Aug; 103(2):350-8, table of contents. PubMed ID: 16861416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Changes in myocardial beta adrenergic receptors in left ventricular hypertrophy caused by barometric and volumetric overloads].
    Galinier M; Senard JM; Srour A; Ligou V; Valet P; Glock Y; Massabuau P; Roux D; Montastruc JL; Bounhoure JP
    Arch Mal Coeur Vaiss; 1994 Aug; 87(8):1015-8. PubMed ID: 7755450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sympatho-adrenergic activation of the ischemic myocardium and its arrhythmogenic impact.
    Schömig A; Richardt G; Kurz T
    Herz; 1995 Jun; 20(3):169-86. PubMed ID: 7635399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The change of beta-adrenergic system after cessation of lead exposure.
    Chang HR; Tsao DA; Yu HS; Ho CK
    Toxicology; 2005 Feb; 207(1):73-80. PubMed ID: 15590123
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiovascular reactivity to experimental stress in psoriasis: a controlled investigation.
    Mastrolonardo M; Picardi A; Alicino D; Bellomo A; Pasquini P
    Acta Derm Venereol; 2006; 86(4):340-4. PubMed ID: 16874421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Studies on the relationship between beta-adrenergic receptor density on cell wall lymphocytes, total serum catecholamine level and heart rate in patients with hyperthyroidism].
    Gajek J; Zieba I; Zyśko D
    Pol Merkur Lekarski; 2000 Aug; 9(50):541-3. PubMed ID: 11081320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.