These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 6312995)

  • 41. Mechanism of action of nafazatrom.
    Seuter F; Busse WD
    Thromb Res Suppl; 1983; 4():75-80. PubMed ID: 6415860
    [No Abstract]   [Full Text] [Related]  

  • 42. Redox cycles of caffeic acid, alpha-tocopherol, and ascorbate: implications for protection of low-density lipoproteins against oxidation.
    Laranjinha J; Cadenas E
    IUBMB Life; 1999 Jul; 48(1):57-65. PubMed ID: 10791916
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Reactions of phenoxyl radicals with NADPH-cytochrome P-450 oxidoreductase and NADPH: reduction of the radicals and inhibition of the enzyme.
    Goldman R; Tsyrlov IB; Grogan J; Kagan VE
    Biochemistry; 1997 Mar; 36(11):3186-92. PubMed ID: 9115995
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reactivity of hypotaurine and cysteine sulfinic acid toward carbonate radical anion and nitrogen dioxide as explored by the peroxidase activity of Cu,Zn superoxide dismutase and by pulse radiolysis.
    Baseggio Conrado A; D'Angelantonio M; Torreggiani A; Pecci L; Fontana M
    Free Radic Res; 2014 Nov; 48(11):1300-10. PubMed ID: 25156684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidation of tryptamine and 5-hydroxytryptamine: a pulse radiolysis and quantum chemical study.
    Gaikwad P; Priyadarsini KI; Naumov S; Rao BS
    J Phys Chem A; 2009 Jul; 113(29):8249-57. PubMed ID: 19569709
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Platelet survival and function in animals with prosthetic mitral valve: the effect of nafazatrom.
    Al-Mondhiry H; Pierce WS; Richenbacher W
    Thromb Haemost; 1984 Oct; 52(2):99-101. PubMed ID: 6523440
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Free-radical metabolites of acetaminophen and a dimethylated derivative.
    Fischer V; West PR; Harman LS; Mason RP
    Environ Health Perspect; 1985 Dec; 64():127-37. PubMed ID: 3007084
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction.
    Anderson RF; Shinde SS; Hay MP; Gamage SA; Denny WA
    J Am Chem Soc; 2003 Jan; 125(3):748-56. PubMed ID: 12526674
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Antioxidant potential of anaerobic human plasma: role of serum albumin and thiols as scavengers of carbon radicals.
    Soriani M; Pietraforte D; Minetti M
    Arch Biochem Biophys; 1994 Jul; 312(1):180-8. PubMed ID: 8031126
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ESR study on the structure-antioxidant activity relationship of tea catechins and their epimers.
    Guo Q; Zhao B; Shen S; Hou J; Hu J; Xin W
    Biochim Biophys Acta; 1999 Mar; 1427(1):13-23. PubMed ID: 10082983
    [TBL] [Abstract][Full Text] [Related]  

  • 51. One-electron oxidation of Trolox C (a vitamin E analogue) by peroxidases.
    Nakamura M
    J Biochem; 1990 Aug; 108(2):245-9. PubMed ID: 2172226
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrastructural observations of an electron dense amorphous layer on selectively damaged endothelial cells, a possible trigger of thrombogenesis in vivo, and its inhibition by nafazatrom.
    Herrmann KS; Voigt WH
    Thromb Res; 1984 Nov; 36(3):205-15. PubMed ID: 6083613
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Vitamin C: the nontoxic, nonrate-limited, antioxidant free radical scavenger.
    Cathcart RF
    Med Hypotheses; 1985 Sep; 18(1):61-77. PubMed ID: 4069036
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phenoxyl radical-induced thiol-dependent generation of reactive oxygen species: implications for benzene toxicity.
    Stoyanovsky DA; Goldman R; Claycamp HG; Kagan VE
    Arch Biochem Biophys; 1995 Mar; 317(2):315-23. PubMed ID: 7893144
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A clinical trial of nafazatrom (Bay g 6575) in advanced cancer.
    O'Donnell JF; Blakowski SA; Zacharski LR; Nierenberg DW; Coughlin CT; Fein S; Philipp E; Cornwell GG
    Am J Clin Oncol; 1986 Apr; 9(2):152-5. PubMed ID: 3717082
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nafazatrom: clonogenic in-vitro assessment of activity against human malignancies.
    Haas CD; Kyle GW; Crissman JD; Schaldenbrand MF
    Invest New Drugs; 1984; 2(1):7-11. PubMed ID: 6469500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phase I and pharmacologic evaluation of nafazatrom in patients with cancer.
    Haas CD; Baker LH; Evans LJ
    Invest New Drugs; 1984; 2(1):13-7. PubMed ID: 6469495
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Nafazatrom: in-vitro assessment of radiation and drug activity against animal and human cell lines.
    Haas JS; Haas CD; Kyle GW
    Invest New Drugs; 1984; 2(1):3-6. PubMed ID: 6469496
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nafazatrom (Bay g 6575) inhibition of tumor cell lipoxygenase activity and cellular proliferation.
    Honn KV; Dunn JR
    FEBS Lett; 1982 Mar; 139(1):65-8. PubMed ID: 6804263
    [No Abstract]   [Full Text] [Related]  

  • 60. Reduction of blue tetrazolium by corticosteroids.
    Graham RE; Biehl ER; Kenner CT; Luttrell GH; Middleton DL
    J Pharm Sci; 1975 Feb; 64(2):226-30. PubMed ID: 165281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.