These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 6313037)

  • 1. Conformational changes of adrenocorticotropin peptides upon interaction with lipid membranes revealed by infrared attenuated total reflection spectroscopy.
    Gremlich HU; Fringeli UP; Schwyzer R
    Biochemistry; 1983 Aug; 22(18):4257-64. PubMed ID: 6313037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction of adrenocorticotropin-(11-24)-tetradecapeptide with neutral lipid membranes revealed by infrared attenuated total reflection spectroscopy.
    Gremlich HU; Fringeli UP; Schwyzer R
    Biochemistry; 1984 Apr; 23(8):1808-10. PubMed ID: 6326811
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrophobic and electrostatic interactions between adrenocorticotropin-(1-24) -tetracosapeptide and lipid vesicles. Amphiphilic primary structures.
    Gysin B; Schwyzer R
    Biochemistry; 1984 Apr; 23(8):1811-8. PubMed ID: 6326812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Membrane structure of bombesin studied by infrared spectroscopy. Prediction of membrane interactions of gastrin-releasing peptide, neuromedin B, and neuromedin C.
    Erne D; Schwyzer R
    Biochemistry; 1987 Oct; 26(20):6316-9. PubMed ID: 3427006
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attenuated total reflectance Fourier transform infrared studies of the interaction of melittin, two fragments of melittin, and delta-hemolysin with phosphatidylcholines.
    Brauner JW; Mendelsohn R; Prendergast FG
    Biochemistry; 1987 Dec; 26(25):8151-8. PubMed ID: 3442649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of adrenocorticotropin-(1-24)-tetracosapeptide with lipid bilayers.
    Hianik T; Sargent DF; Smriga M; Sikurová L; Nemcová P
    Gen Physiol Biophys; 1996 Jun; 15(3):239-50. PubMed ID: 9076506
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptides modeled on the transmembrane region of the slow voltage-gated IsK potassium channel: structural characterization of peptide assemblies in the beta-strand conformation.
    Aggeli A; Boden N; Cheng YL; Findlay JB; Knowles PF; Kovatchev P; Turnbull PJ
    Biochemistry; 1996 Dec; 35(50):16213-21. PubMed ID: 8973194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evidence for predicted transmembrane peptide topography: incorporation of hydrophobic peptide alpha-helical rods with an N-terminal positive charge having a length comparable to the thickness of lipid bilayers into the membranes.
    Katakai R; Wanikawa K; Saga K
    Biopolymers; 1990; 30(7-8):815-9. PubMed ID: 2275981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferred conformation, orientation, and accumulation of dynorphin A-(1-13)-tridecapeptide on the surface of neutral lipid membranes.
    Erne D; Sargent DF; Schwyzer R
    Biochemistry; 1985 Jul; 24(16):4261-3. PubMed ID: 2864955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of variations in the structure of a polyleucine-based alpha-helical transmembrane peptide on its interaction with phosphatidylcholine bilayers.
    Liu F; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2002 Jul; 41(29):9197-207. PubMed ID: 12119034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation and ion-channeling activity of a 27-residue peptide modeled on the single-transmembrane segment of the IsK (minK) protein.
    Aggeli A; Bannister ML; Bell M; Boden N; Findlay JB; Hunter M; Knowles PF; Yang JC
    Biochemistry; 1998 Jun; 37(22):8121-31. PubMed ID: 9609707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of an amphiphilic peptide with a phospholipid bilayer surface by molecular dynamics simulation study.
    Huang P; Loew GH
    J Biomol Struct Dyn; 1995 Apr; 12(5):937-56. PubMed ID: 7626245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformational and orientation studies of artificial ion channels incorporated into lipid bilayers.
    Biron E; Voyer N; Meillon JC; Cormier ME; Auger M
    Biopolymers; 2000; 55(5):364-72. PubMed ID: 11241211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylethanolamine bilayers: differential scanning calorimetric and Fourier transform infrared spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biophys J; 1995 Mar; 68(3):847-57. PubMed ID: 7756552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of a peptide model of a hydrophobic transmembrane alpha-helical segment of a membrane protein with phosphatidylcholine bilayers: differential scanning calorimetric and FTIR spectroscopic studies.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 1992 Nov; 31(46):11579-88. PubMed ID: 1445893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Peptide models of the helical hydrophobic transmembrane segments of membrane proteins: interactions of acetyl-K2-(LA)12-K2-amide with phosphatidylethanolamine bilayer membranes.
    Zhang YP; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2001 Jan; 40(2):474-82. PubMed ID: 11148042
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adrenocorticotropic hormone (ACTH)-lipid interactions. Implications for involvement of amphipathic helix formation.
    Verhallen PF; Demel RA; Zwiers H; Gispen WH
    Biochim Biophys Acta; 1984 Aug; 775(2):246-54. PubMed ID: 6087904
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Induction of nonbilayer structures in diacylphosphatidylcholine model membranes by transmembrane alpha-helical peptides: importance of hydrophobic mismatch and proposed role of tryptophans.
    Killian JA; Salemink I; de Planque MR; Lindblom G; Koeppe RE; Greathouse DV
    Biochemistry; 1996 Jan; 35(3):1037-45. PubMed ID: 8547239
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional signal peptide reduces bilayer thickness of phosphatidylcholine liposomes.
    Tahara Y; Murata M; Ohnishi S; Fujiyoshi Y; Kikuchi M; Yamamoto Y
    Biochemistry; 1992 Sep; 31(37):8747-54. PubMed ID: 1390661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of the membrane orientation and secondary structure of the C-terminal domains of Bak and Bcl-2 by lipids.
    Torrecillas A; Martínez-Senac MM; Goormaghtigh E; de Godos A; Corbalán-García S; Gómez-Fernández JC
    Biochemistry; 2005 Aug; 44(32):10796-809. PubMed ID: 16086582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.