BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 6313050)

  • 1. Cytochromes of the trimethylamine N-oxide anaerobic respiratory pathway of Escherichia coli.
    Bragg PD; Hackett NR
    Biochim Biophys Acta; 1983 Oct; 725(1):168-77. PubMed ID: 6313050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) metabolism in Shewanella halifaxensis HAW-EB4 by terminal electron acceptor and involvement of c-type cytochrome.
    Zhao JS; Manno D; Hawari J
    Microbiology (Reading); 2008 Apr; 154(Pt 4):1026-1037. PubMed ID: 18375796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of Escherichia coli formate hydrogenlyase activity by trimethylamine N-oxide is due to drainage of the inducer formate.
    Abaibou H; Giordano G; Mandrand-Berthelot MA
    Microbiology (Reading); 1997 Aug; 143 ( Pt 8)():2657-2664. PubMed ID: 9274019
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization and characterization of cytochromes from membrane vesicles of Escherichia coli K-12 grown in anaerobiosis with nitrate.
    Sánchez Crispín JA; Dubourdieu M; Chippaux M
    Biochim Biophys Acta; 1979 Aug; 547(2):198-210. PubMed ID: 380649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electron transfer and binding of the c-type cytochrome TorC to the trimethylamine N-oxide reductase in Escherichia coli.
    Gon S; Giudici-Orticoni MT; Méjean V; Iobbi-Nivol C
    J Biol Chem; 2001 Apr; 276(15):11545-51. PubMed ID: 11056172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochrome pools in membranes of Escherichia coli grown aerobically on L-proline.
    Withers HK; Bragg PD
    Biochim Biophys Acta; 1987 Jun; 892(1):10-22. PubMed ID: 3555617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular analysis of the trimethylamine N-oxide (TMAO) reductase respiratory system from a Shewanella species.
    Dos Santos JP; Iobbi-Nivol C; Couillault C; Giordano G; Méjean V
    J Mol Biol; 1998 Nov; 284(2):421-33. PubMed ID: 9813127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimethyl sulfoxide reductase is not required for trimethylamine N-oxide reduction in Escherichia coli.
    Daruwala R; Meganathan R
    FEMS Microbiol Lett; 1991 Oct; 67(3):255-9. PubMed ID: 1769531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of trimethylamine N-oxide by Escherichia coli as anaerobic respiration.
    Ishimoto M; Shimokawa O
    Z Allg Mikrobiol; 1978; 18(3):173-81. PubMed ID: 358620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of the electron transport system in Staphylococcus aureus by trimethylamine-N-oxide.
    Suzuki S; Kubo A; Shinano H; Takama K
    Microbios; 1992; 71(287):145-8. PubMed ID: 1453985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proton translocation coupled to trimethylamine N-oxide reduction in anaerobically grown Escherichia coli.
    Takagi M; Tsuchiya T; Ishimoto M
    J Bacteriol; 1981 Dec; 148(3):762-8. PubMed ID: 7031034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane cytochromes of Escherichia coli grown aerobically and anaerobically with nitrate.
    Hackett NR; Bragg PD
    J Bacteriol; 1983 May; 154(2):708-18. PubMed ID: 6341359
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial reduction of trimethylamine oxide.
    Barrett EL; Kwan HS
    Annu Rev Microbiol; 1985; 39():131-49. PubMed ID: 3904597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trimethylamine N-oxide respiration by aerobic photosynthetic bacterium, Erythrobacter sp. OCh 114.
    Arata H; Serikawa Y; Takamiya K
    J Biochem; 1988 Jun; 103(6):1011-5. PubMed ID: 3170512
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TorC apocytochrome negatively autoregulates the trimethylamine N-oxide (TMAO) reductase operon in Escherichia coli.
    Ansaldi M; Bordi C; Lepelletier M; Méjean V
    Mol Microbiol; 1999 Jul; 33(2):284-95. PubMed ID: 10411745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and phenotypic control of the cytochrome content of Escherichia coli.
    Reid GA; Ingledew WJ
    Biochem J; 1979 Aug; 182(2):465-72. PubMed ID: 389237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TorT, a member of a new periplasmic binding protein family, triggers induction of the Tor respiratory system upon trimethylamine N-oxide electron-acceptor binding in Escherichia coli.
    Baraquet C; Théraulaz L; Guiral M; Lafitte D; Méjean V; Jourlin-Castelli C
    J Biol Chem; 2006 Dec; 281(50):38189-99. PubMed ID: 17040909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimethylsulphoxide and trimethylamine oxide respiration of Proteus vulgaris. Evidence for a common terminal reductase system.
    Styrvold OB; Strøm AR
    Arch Microbiol; 1984 Nov; 140(1):74-8. PubMed ID: 6442555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Trimethylamine oxide respiration of Alteromonas putrefaciens NCMB 1735: Na+-stimulated anaerobic transport in cells and membrane vesicles.
    Stenberg E; Ringø E; Strøm AR
    Appl Environ Microbiol; 1984 May; 47(5):1090-5. PubMed ID: 6430228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of cytochromes involved in the transfer of electrons to the periplasmic NO3- reductase of Rhodobacter capsulatus and resolution of a soluble NO3(-)-reductase--cytochrome-c552 redox complex.
    Richardson DJ; McEwan AG; Page MD; Jackson JB; Ferguson SJ
    Eur J Biochem; 1990 Nov; 194(1):263-70. PubMed ID: 2174775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.