BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 6313069)

  • 1. The production of oxygen-centered radicals by bacillus-Calmette-Guerin-activated macrophages. An electron paramagnetic resonance study of the response to phorbol myristate acetate.
    Hume DA; Gordon S; Thornalley PJ; Bannister JV
    Biochim Biophys Acta; 1983 Oct; 763(3):245-50. PubMed ID: 6313069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of oxygen-centered radicals by neutrophils and macrophages as studied by electron spin resonance (ESR).
    Bannister JV; Bannister WH
    Environ Health Perspect; 1985 Dec; 64():37-43. PubMed ID: 3007099
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lymphocytes can produce respiratory burst and oxygen radicals as polymorphonuclear leukocytes.
    Zhao BL; Duan SJ; Xin WJ
    Cell Biophys; 1990 Dec; 17(3):205-11. PubMed ID: 1714347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spin trapping evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to superoxide-mediated destruction.
    Britigan BE; Coffman TJ; Buettner GR
    J Biol Chem; 1990 Feb; 265(5):2650-6. PubMed ID: 2154454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of superoxide production in stimulated and unstimulated living cells using new cyclic nitrone spin traps.
    Abbas K; Hardy M; Poulhès F; Karoui H; Tordo P; Ouari O; Peyrot F
    Free Radic Biol Med; 2014 Jun; 71():281-290. PubMed ID: 24662195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO.
    Arroyo CM; Kramer JH; Dickens BF; Weglicki WB
    FEBS Lett; 1987 Aug; 221(1):101-4. PubMed ID: 3040465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry.
    Britigan BE; Rosen GM; Chai Y; Cohen MS
    J Biol Chem; 1986 Apr; 261(10):4426-31. PubMed ID: 3007455
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging.
    de Kok TM; van Maanen JM; Lankelma J; ten Hoor F; Kleinjans JC
    Carcinogenesis; 1992 Jul; 13(7):1249-55. PubMed ID: 1322251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production and interaction of oxygen and nitric oxide free radicals in PMA stimulated macrophages during the respiratory burst.
    Li H; Hu J; Xin W; Zhao B
    Redox Rep; 2000; 5(6):353-8. PubMed ID: 11140745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the origin of the hydroxyl spin adduct of DMPO produced from the stimulation of neutrophils by phorbol-12-myristate-13-acetate.
    Janzen EG; Jandrisits LT; Barber DL
    Free Radic Res Commun; 1987; 4(2):115-23. PubMed ID: 2854101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of the superoxide-generating NADPH oxidase of intestinal lymphocytes produces highly reactive free radicals from sulfite.
    Chamulitrat W
    Free Radic Biol Med; 1999 Aug; 27(3-4):411-21. PubMed ID: 10468216
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV; Mason RP
    J Biol Chem; 1990 Oct; 265(28):16733-6. PubMed ID: 2170352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of cobalt(II) and iron(II) hydroxyl and superoxide free radical formation.
    Kadiiska MB; Maples KR; Mason RP
    Arch Biochem Biophys; 1989 Nov; 275(1):98-111. PubMed ID: 2554814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyl radical formation in chondrocytes and cartilage as detected by electron paramagnetic resonance spectroscopy using spin trapping reagents.
    Tiku ML; Yan YP; Chen KY
    Free Radic Res; 1998 Sep; 29(3):177-87. PubMed ID: 9802549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the role of hydroxyl radical and the effect of tetrandrine on nuclear factor--kappaB activation by phorbol 12-myristate 13-acetate.
    Ye J; Ding M; Zhang X; Rojanasakul Y; Shi X
    Ann Clin Lab Sci; 2000 Jan; 30(1):65-71. PubMed ID: 10678585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE; Roeder TL; Buettner GR
    Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for intracellular superoxide formation following the exposure of guinea pig enterocytes to bleomycin.
    Turner MJ; Bozarth CH; Strauss KE
    Biochem Pharmacol; 1989 Jan; 38(1):85-90. PubMed ID: 2462883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scavenging effect of berbamine on active oxygen radicals in phorbol ester-stimulated human polymorphonuclear leukocytes.
    Ju HS; Li XJ; Zhao BL; Han ZW; Xin WJ
    Biochem Pharmacol; 1990 Jun; 39(11):1673-8. PubMed ID: 2160816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of phagocyte-derived free radicals with spin trapping techniques: effect of temperature and cellular metabolism.
    Rosen GM; Britigan BE; Cohen MS; Ellington SP; Barber MJ
    Biochim Biophys Acta; 1988 May; 969(3):236-41. PubMed ID: 2835986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide-dependent formation of hydroxyl radical catalyzed by transferrin.
    Motohashi N; Mori I
    FEBS Lett; 1983 Jun; 157(1):197-9. PubMed ID: 6305716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.