BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 6313460)

  • 1. Enzymic differentiation in cultured foetal hepatocytes of the rat. Induction of serine dehydratase activity by dexamethasone and dibutyryl cyclic AMP.
    Oliver IT; Martin RL; Fisher CJ; Yeoh GC
    Differentiation; 1983; 24(3):234-8. PubMed ID: 6313460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of adrenaline and cyclic AMP in appearance of tyrosine aminotransferase in perinatal rat liver.
    Ghisalberti AV; Steele JG; Cake MH; McGrath MC; Oliver IT
    Biochem J; 1980 Sep; 190(3):685-90. PubMed ID: 6110423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of hepatic L-serine dehydratase and L-serine-pyruvate aminotransferase in the developing neonatal rat.
    Snell K; Walker DG
    Biochem J; 1974 Dec; 144(3):519-31. PubMed ID: 4377655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of cystathionase in human foetal liver.
    Heinonen K; Räihä NC
    Biochem J; 1974 Dec; 144(3):607-9. PubMed ID: 4377660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine aminotransferase induction in hepatocytes cultured from rat foetuses treated with dexamethasone in utero.
    Yeoh GC; Arbuckle T; Oliver IT
    Biochem J; 1979 Jun; 180(3):545-9. PubMed ID: 39550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of the five urea-cycle enzymes by glucagon in cultured foetal rat hepatocytes.
    Husson A; Buquet C; Vaillant R
    Differentiation; 1987; 35(3):212-8. PubMed ID: 3328726
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in levels of argininosuccinate lyase mRNA during induction by glucagon and cyclic AMP in cultured foetal-rat hepatocytes.
    Renouf S; Buquet C; Fairand A; Benamar M; Husson A
    Biochem J; 1993 Apr; 291 ( Pt 2)(Pt 2):609-13. PubMed ID: 8387274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Requirement of prolonged presence of a high intracellular level of cyclic AMP for induction of serine dehydratase in primary cultured rat hepatocytes.
    Noda C; Shinjyo F; Nakamura T; Ichihara A
    J Biochem; 1983 Jun; 93(6):1677-84. PubMed ID: 6193102
    [No Abstract]   [Full Text] [Related]  

  • 9. Regulation of tyrosine aminotransferase in foetal rat liver.
    Andersson SM; Räihä NC; Ohisalo JJ
    Biochem J; 1980 Feb; 186(2):609-12. PubMed ID: 6103701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of cystathionase in foetal rat liver explants. Effects of dexamethasone, N-6, O-2 -dibutyryladenosine 3,5 -monophosphate and glucagon in vitro.
    Heinonen K
    Biochim Biophys Acta; 1975 Jul; 399(1):113-23. PubMed ID: 167857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormonal regulation of serine dehydratase activity in primary cultures of adult rat hepatocytes.
    Noda C; Nakamura T; Ichihara A
    Biochem Biophys Res Commun; 1981 May; 100(1):65-72. PubMed ID: 6266411
    [No Abstract]   [Full Text] [Related]  

  • 12. Hormonal inducibility of liver-specific enzymes in cultured rat embryos.
    Westenend PJ; Dahmen R; Charles R; Lamers WH
    Acta Morphol Neerl Scand; 1986; 24(3):165-80. PubMed ID: 2827435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of glucocorticoid- and cyclic AMP-responsive elements of the rat serine dehydratase gene: difference in responses of the transfected and chromosomal genes.
    Matsuda K; Noda C; Fukushima C; Ichihara A
    Biochem Biophys Res Commun; 1991 Apr; 176(1):385-91. PubMed ID: 1850265
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hepatocyte differentiation in culture. Appearance of tyrosine aminotransferase.
    Yeoh GC; Bennett FA; Oliver IT
    Biochem J; 1979 Apr; 180(1):153-60. PubMed ID: 39544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of argininosuccinate synthetase mRNA level in rat foetal hepatocytes.
    Bourgeois P; Harlin JC; Renouf S; Goutal I; Fairand A; Husson A
    Eur J Biochem; 1997 Nov; 249(3):669-74. PubMed ID: 9395312
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction between glucocorticoids and cyclic AMP in the regulation of phosphoenolpyruvate carboxykinase (GTP) in the isolated perfused rat liver. Effects of cordycepin and cycloheximide.
    Krone W; Marquardt W; Seitz HJ; Tarnowski W
    Biochim Biophys Acta; 1976 Nov; 451(1):72-81. PubMed ID: 188461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deinduction of phosphoenolpyruvate carboxykinase (guanosine triphosphate) synthesis in Reuber H-35 cells.
    Tilghman SM; Gunn JM; Fisher LM; Hanson RW
    J Biol Chem; 1975 May; 250(9):3322-9. PubMed ID: 164466
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of glucagon, 6-N,2'-O-dibutyryladenosine 3':5'-cyclic monophosphate and triamcinolone on the arginine synthetase system in perinatal rat liver.
    Schwartz AL
    Biochem J; 1972 Jan; 126(1):89-98. PubMed ID: 4342387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ornithine decarboxylase activity by amino acids, cyclic AMP and luteinizing hormone in cultured mammalian cells.
    Costa M; Meloni M; Jones MK
    Biochim Biophys Acta; 1980 Jul; 608(2):398-408. PubMed ID: 6249374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insulin and glucagon as a new regulator system for tryptophan oxygenase activity demonstrated in primary cultured rat hepatocytes.
    Nakamura T; Shinno H; Ichihara A
    J Biol Chem; 1980 Aug; 255(16):7533-5. PubMed ID: 6249804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.