These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 6313927)

  • 1. Chemical stimulation of Na transport through amiloride-blockable channels of frog skin epithelium.
    Li JH; Lindemann B
    J Membr Biol; 1983; 75(3):179-92. PubMed ID: 6313927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Competitive blocking of epithelial sodium channels by organic cations: the relationship between macroscopic and microscopic inhibition constants.
    Li JH; Lindemann B
    J Membr Biol; 1983; 76(3):235-51. PubMed ID: 6100864
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Noise analysis of inward and outward Na+ currents across the apical border of ouabain-treated frog skin.
    Van Driessche W; Erlij D
    Pflugers Arch; 1983 Aug; 398(3):179-88. PubMed ID: 6314237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: I. Pyrazine-ring modifications.
    Li JH; Cragoe EJ; Lindemann B
    J Membr Biol; 1985; 83(1-2):45-56. PubMed ID: 2582124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fluctuation analysis study of the development of amiloride-sensitive Na+ transport in the skin of larval bullfrogs (Rana catesbeiana).
    Hillyard SD; Zeiske W; Van Driessche W
    Biochim Biophys Acta; 1982 Nov; 692(3):455-61. PubMed ID: 6293572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure-activity relationship of amiloride analogs as blockers of epithelial Na channels: II. Side-chain modifications.
    Li JH; Cragoe EJ; Lindemann B
    J Membr Biol; 1987; 95(2):171-85. PubMed ID: 2437309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The intracellular localization of amiloride in frog skin.
    Briggman JV; Graves JS; Spicer SS; Cragoe EJ
    Histochem J; 1983 Mar; 15(3):239-55. PubMed ID: 6303988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of nucleotides, amiloride and ions on active ion transport by the frog skin. A single-membrane model].
    Bessonov BI; Butsuk SV
    Dokl Akad Nauk SSSR; 1983; 268(2):478-81. PubMed ID: 6299676
    [No Abstract]   [Full Text] [Related]  

  • 9. Autoregulation of apical membrane Na+ permeability of tight epithelia. Noise analysis with amiloride and CGS 4270.
    Abramcheck FJ; Van Driessche W; Helman SI
    J Gen Physiol; 1985 Apr; 85(4):555-82. PubMed ID: 2409219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of amiloride on the apical cell membrane cation channels of a sodium-absorbing, potassium-secreting renal epithelium.
    O'Neil RG; Boulpaep EL
    J Membr Biol; 1979 Nov; 50(3-4):365-87. PubMed ID: 513119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of standard diuretics and RPH 2823 on transepithelial Na+ transport in isolated frog skin.
    Kipnowski J; Passon J; Detjen C; Düsing R; Miederer S; Kramer HJ
    Klin Wochenschr; 1986 Aug; 64(16):750-9. PubMed ID: 2429018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bretylium opens mucosal amiloride-sensitive sodium channels.
    Ilani A; Lichtstein D; Bacaner MB
    Biochim Biophys Acta; 1982 Dec; 693(2):503-6. PubMed ID: 6297561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diphenylamine-2-carboxylate stimulates sodium ion transport in frog skin epithelium.
    Durand J; Lehmann C
    Comp Biochem Physiol A Comp Physiol; 1989; 94(1):173-8. PubMed ID: 2571451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)-blockable, poorly selective cation channels in the apical membrane of amphibian epithelia. UO2(2+) reveals two channel types.
    Desmedt L; Simaels J; Van Driessche W
    J Gen Physiol; 1993 Jan; 101(1):85-102. PubMed ID: 7679717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferences on the nature of the apical sodium entry site in frog skin epithelium.
    Benos DJ; Watthey JW
    J Pharmacol Exp Ther; 1981 Nov; 219(2):481-8. PubMed ID: 6974777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive blocking of apical sodium channels in epithelia.
    Frehland E; Hoshiko T; Machlup S
    Biochim Biophys Acta; 1983 Aug; 732(3):636-46. PubMed ID: 6307378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel.
    Garty H; Benos DJ
    Physiol Rev; 1988 Apr; 68(2):309-73. PubMed ID: 2451832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amiloride-sensitive epithelial Na+ channels reconstituted into planar lipid bilayer membranes.
    Sariban-Sohraby S; Latorre R; Burg M; Olans L; Benos D
    Nature; 1984 Mar 1-7; 308(5954):80-2. PubMed ID: 6322006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory and stimulatory effects of amiloride analogues on sodium transport in frog skin.
    Li JH; de Sousa RC
    J Membr Biol; 1979 Apr; 46(2):155-69. PubMed ID: 448731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active transepithelial potassium transport in frog skin via specific potassium channels in the apical membrane.
    Nielsen R
    Acta Physiol Scand; 1984 Feb; 120(2):287-96. PubMed ID: 6324546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.