These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 6314075)

  • 1. Opioid antinociception and positive reinforcement are mediated by different types of opioid receptors.
    Pollerberg GE; Costa T; Shearman GT; Herz A; Reid LD
    Life Sci; 1983 Oct; 33(16):1549-59. PubMed ID: 6314075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical stimulation at traditional acupuncture sites in periphery produces brain opioid-receptor-mediated antinociception in rats.
    Chen XH; Geller EB; Adler MW
    J Pharmacol Exp Ther; 1996 May; 277(2):654-60. PubMed ID: 8627542
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Opioid receptor subtypes associated with ventral tegmental facilitation and periaqueductal gray inhibition of feeding.
    Jenck F; Quirion R; Wise RA
    Brain Res; 1987 Oct; 423(1-2):39-44. PubMed ID: 2823993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Naloxone and diprenorphine reduce responding for brain self-stimulation in a fixed-ratio schedule in rats.
    Schaefer GJ; Michael RP
    Pharmacol Biochem Behav; 1988 Jan; 29(1):209-12. PubMed ID: 3353428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing fentanyl antinociception and preventing tolerance with α-2 adrenoceptor agonists in rats.
    Yildiz Pehlivan D; Kara AY; Koyu A; Simsek F
    Behav Brain Res; 2024 Feb; 457():114726. PubMed ID: 37865211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Morphine and diprenorphine together potentiate intake of alcoholic beverages.
    Reid LD; Czirr SA; Bensinger CC; Hubbell CL; Volanth AJ
    Alcohol; 1987; 4(3):161-8. PubMed ID: 3036177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opioid receptor subtypes associated with ventral tegmental facilitation of lateral hypothalamic brain stimulation reward.
    Jenck F; Gratton A; Wise RA
    Brain Res; 1987 Oct; 423(1-2):34-8. PubMed ID: 2823990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Different mechanisms mediate beta-endorphin- and morphine-induced inhibition of the tail-flick response in rats.
    Tseng LF; Tang R
    J Pharmacol Exp Ther; 1990 Feb; 252(2):546-51. PubMed ID: 2156050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for opioid and non-opioid forms of stimulation-produced analgesia in the rat.
    Cannon JT; Prieto GJ; Lee A; Liebeskind JC
    Brain Res; 1982 Jul; 243(2):315-21. PubMed ID: 7104742
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kappa-receptor antagonist reverse 'non-opioid' stress-induced analgesia.
    Panerai AE; Martini A; Sacerdote P; Mantegazza P
    Brain Res; 1984 Jun; 304(1):153-6. PubMed ID: 6331578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antinociceptive actions of intrathecal xylazine: interactions with spinal cord opioid pathways.
    Goodchild CS; Guo Z; Davies A; Gent JP
    Br J Anaesth; 1996 Apr; 76(4):544-51. PubMed ID: 8652328
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Addictive agents and intracranial stimulation (ICS): novel antagonists and agonists of morphine and pressing for ICS.
    Bermudez-Rattoni F; Cruz-Morales S; Reid LD
    Pharmacol Biochem Behav; 1983 May; 18(5):777-84. PubMed ID: 6856650
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diprenorphine and naloxone in squirrel monkeys with enhanced sensitivity to opioid antagonists.
    Oliveto AH; Dykstra LA
    Psychopharmacology (Berl); 1988; 95(3):339-43. PubMed ID: 3137619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphine analgesia and acute physical dependence: rapid onset of two opposing, dose-related processes.
    Kim DH; Fields HL; Barbaro NM
    Brain Res; 1990 May; 516(1):37-40. PubMed ID: 2163724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antinociceptive effects of stimulation of discrete sites in the rat hypothalamus: evidence for the participation of the lateral hypothalamus area in descending pain suppression mechanisms.
    Franco AC; Prado WA
    Braz J Med Biol Res; 1996 Nov; 29(11):1531-41. PubMed ID: 9196558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of naloxone and diprenorphine on spontaneous activity in rats and mice.
    DeRossett SE; Holtzman SG
    Pharmacol Biochem Behav; 1982 Aug; 17(2):347-51. PubMed ID: 7134243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Naloxone-reversible analgesia induced by electrical stimulation of the habenula in the rat.
    Mahieux G; Benabid AL
    Brain Res; 1987 Mar; 406(1-2):118-29. PubMed ID: 3032353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of relative intrinsic activity of mu-opioid analgesics in vivo by using beta-funaltrexamine.
    Adams JU; Paronis CA; Holtzman SG
    J Pharmacol Exp Ther; 1990 Dec; 255(3):1027-32. PubMed ID: 2175793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal antinociception by Tyr-D-Ser(otbu)-Gly-Phe-Leu-Thr, a selective delta-opioid receptor agonist.
    Kalso EA; Sullivan AF; McQuay HJ; Dickenson AH
    Eur J Pharmacol; 1992 May; 216(1):97-101. PubMed ID: 1326441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Naloxone-induced analgesia in diabetic mice.
    Kamei J; Kawashima N; Kasuya Y
    Eur J Pharmacol; 1992 Jan; 210(3):339-41. PubMed ID: 1319338
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.