These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
352 related articles for article (PubMed ID: 6314109)
1. Bacteriophage survival: multiple mechanisms for avoiding the deoxyribonucleic acid restriction systems of their hosts. Krüger DH; Bickle TA Microbiol Rev; 1983 Sep; 47(3):345-60. PubMed ID: 6314109 [No Abstract] [Full Text] [Related]
2. Restriction and modification in Bacillus subtilis: gene coding for a BsuR-specific modification methyltransferase in the temperate bacteriophage phi 3T. Noyer-Weidner M; Pawlek B; Jentsch S; Günthert U; Trautner TA J Virol; 1981 Jun; 38(3):1077-80. PubMed ID: 6264152 [TBL] [Abstract][Full Text] [Related]
3. Restriction and modification in Bacillus subtilis: inducibility of a DNA methylating activity in nonmodifying cells. Günthert U; Pawlek B; Stutz J; Trautner TA J Virol; 1976 Oct; 20(1):188-95. PubMed ID: 824459 [TBL] [Abstract][Full Text] [Related]
4. Expression of the thymidylate synthetase gene of the Bacillus subtilis bacteriophage Phi-3-T in Escherichia coli. Ehrlich SD; Bursztyn-Pettegrew H; Stroynowski I; Lederberg J Proc Natl Acad Sci U S A; 1976 Nov; 73(11):4145-9. PubMed ID: 825858 [TBL] [Abstract][Full Text] [Related]
5. Fragmentation of Bacillus bacteriophage phi105 DNA by complementary single-stranded DNA in the cohesive ends of the molecule. Scher BM; Dean DH; Garro AJ J Virol; 1977 Aug; 23(2):377-83. PubMed ID: 407373 [TBL] [Abstract][Full Text] [Related]
6. In vivo methylation of bacteriophage phi X174 DNA. Hattman S; Gribbin C; Hutchison CA J Virol; 1979 Dec; 32(3):845-51. PubMed ID: 159962 [TBL] [Abstract][Full Text] [Related]
7. Partial purification of the Escherichia coli K-12 mec+ deoxyribonucleic acid-cytosine methylase: in vitro methylation completely protects bacteriophage lambda deoxyribonucleic acid against cleavage by R-EcoRII. Hattman S J Bacteriol; 1977 Mar; 129(3):1330-4. PubMed ID: 14921 [TBL] [Abstract][Full Text] [Related]
8. In vivo methylation by Escherichia coli K-12 mec+ deoxyribonucleic acid-cytosine methylase protects against in vitro cleavage by the RII restriction endonuclease (R. Eco RII). Schlagman S; Hattman S; May MS; Berger L J Bacteriol; 1976 May; 126(2):990-6. PubMed ID: 770462 [TBL] [Abstract][Full Text] [Related]
9. In vivo methylation in Escherichia coli by the Bacillus subtilis phage phi 3T I methyltransferase to protect plasmids from restriction upon transformation of Clostridium acetobutylicum ATCC 824. Mermelstein LD; Papoutsakis ET Appl Environ Microbiol; 1993 Apr; 59(4):1077-81. PubMed ID: 8386500 [TBL] [Abstract][Full Text] [Related]
10. Restriction and modification of bacteriophage SP10 DNA by Bacillus subtilis Marburg 168: stabilization of SP10 DNA in restricting hosts preinfected with a heterologous phage, SP18. Witmer H; Franks M J Virol; 1981 Jan; 37(1):148-55. PubMed ID: 6260969 [TBL] [Abstract][Full Text] [Related]
11. [Expression of cloned gene for methyltransferase from Bacillus subtilis bacteriophage SPbetaB]. Baldauf F; Kiss A Mol Gen Mikrobiol Virusol; 1985 Feb; (2):26-8. PubMed ID: 3025691 [TBL] [Abstract][Full Text] [Related]
12. Restriction and modification in Bacillus subtilis: DNA methylation potential of the related bacteriophages Z, SPR, SP beta, phi 3T, and rho 11. Noyer-Weidner M; Jentsch S; Pawlek B; Günthert U; Trautner TA J Virol; 1983 May; 46(2):446-53. PubMed ID: 6302313 [TBL] [Abstract][Full Text] [Related]
13. DNA methyltransferases of Bacillus subtilis and its bacteriophages. Günthert U; Trautner TA Curr Top Microbiol Immunol; 1984; 108():11-22. PubMed ID: 6325095 [No Abstract] [Full Text] [Related]
14. Absence in Bacillus subtilis and Staphylococcus aureus of the sequence-specific deoxyribonucleic acid methylation that is conferred in Escherichia coli K-12 by the dam and dcm enzymes. Dreiseikelmann B; Wackernagel W J Bacteriol; 1981 Jul; 147(1):259-61. PubMed ID: 6263867 [TBL] [Abstract][Full Text] [Related]
15. Identification of the protein firmly bound to the ends of bacteriophage phi 29 DNA. Harding NE; Ito J; David GS Virology; 1978 Feb; 84(2):279-92. PubMed ID: 203093 [No Abstract] [Full Text] [Related]
16. Restriction fragment analysis of bacteriophage SPP1 in vitro transcription by host RNA polymerase. Chenciner N; Milanesi G J Virol; 1978 Oct; 28(1):95-105. PubMed ID: 100614 [TBL] [Abstract][Full Text] [Related]
17. Resistance of bacteriophage H1 to restriction and modification by Bacillus subtilis R. Bron S; Luxen E; Venema G J Virol; 1983 Jun; 46(3):703-8. PubMed ID: 6406685 [TBL] [Abstract][Full Text] [Related]
18. Effect of enzymatic methylation on the chemical, physical, and biological properties of DNA. Greenberg J; Krasna AI Arch Biochem Biophys; 1976 Dec; 177(2):468-79. PubMed ID: 827975 [No Abstract] [Full Text] [Related]
19. Incorporation of uridine into Bacillus subtilis and SPP1 bacteriophage deoxyribonucleic acid. Barlati S J Bacteriol; 1970 Jan; 101(1):330-2. PubMed ID: 4983654 [TBL] [Abstract][Full Text] [Related]
20. Specificity of promoter site utilization in vitro by bacterial RNA polymerases on Bacillus phage phi 29 DNA. Transcription mapping with exonuclease III. Davison BL; Murray CL; Rabinowitz JC J Biol Chem; 1980 Sep; 255(18):8819-30. PubMed ID: 6251067 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]