These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 6314244)

  • 1. Excitation-contraction coupling in frog ventricle. Possible Ca2+ transport mechanisms.
    Klitzner T; Morad M
    Pflugers Arch; 1983 Sep; 398(4):274-83. PubMed ID: 6314244
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of Ni2+ on ionic currents and tension generation in frog ventricular muscle.
    Klitzner T; Morad M
    Pflugers Arch; 1983 Sep; 398(4):267-73. PubMed ID: 6314243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of action of diltiazem in isolated human atrial and ventricular myocardium.
    Sutton MS; Morad M
    J Mol Cell Cardiol; 1987 May; 19(5):497-508. PubMed ID: 3498047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electromechanical studies on the inotropic effects of acetylstrophanthidin in ventricular muscle.
    Greenspan AM; Morad M
    J Physiol; 1975 Dec; 253(2):357-84. PubMed ID: 1082501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frog ventricle: participation of SR in excitation-contraction coupling.
    Anderson ME; Fox IJ; Swayze CR; Donaldson SK
    Am J Physiol; 1989 May; 256(5 Pt 2):H1432-9. PubMed ID: 2785769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extracellular potassium accumulation in voltage-clamped frog ventricular muscle.
    Cleemann L; Morad M
    J Physiol; 1979 Jan; 286():83-111. PubMed ID: 312322
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Voltage- and frequency-dependent block of diltiazem on the slow inward current and generation of tension in frog ventricular muscle.
    Tung L; Morad M
    Pflugers Arch; 1983 Aug; 398(3):189-98. PubMed ID: 6314238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of calcium current and its sensitivity to monovalent cations in dialysed ventricular cells of guinea-pig.
    Matsuda H; Noma A
    J Physiol; 1984 Dec; 357():553-73. PubMed ID: 6096535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical measurement of voltage-dependent Ca2+ influx in frog heart.
    Pizarro G; Cleemann L; Morad M
    Proc Natl Acad Sci U S A; 1985 Mar; 82(6):1864-8. PubMed ID: 2580301
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres.
    Brum G; Ríos E; Stéfani E
    J Physiol; 1988 Apr; 398():441-73. PubMed ID: 2455801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of internal sodium and caesium on phasic contraction of patch-clamped rabbit ventricular myocytes.
    Levi AJ; Mitcheson JS; Hancox JC
    J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):1-19. PubMed ID: 8730578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calcium-channel gating in frog skeletal muscle membrane: effect of temperature.
    Cota G; Nicola Siri L; Stefani E
    J Physiol; 1983 May; 338():395-412. PubMed ID: 6308247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The tension-depolarization relationship of frog atrial trabeculae as determined by potassium contractures.
    Chapman RA; Tunstall J
    J Physiol; 1981 Jan; 310():97-115. PubMed ID: 6971932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of D600 on tonic tension, Na+ inward current, and Na+-Ca2+ exchange in frog heart.
    Horackova M
    Can J Physiol Pharmacol; 1985 Nov; 63(11):1404-10. PubMed ID: 2416419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitation-concentration coupling in frog ventricle: evidence from voltage clamp studies.
    Morad M; Orkand RK
    J Physiol; 1971 Dec; 219(1):167-89. PubMed ID: 5316660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potassium currents in frog ventricular muscle: evidence from voltage clamp currents and extracellular K accumulation.
    Cleemann L; Morad M
    J Physiol; 1979 Jan; 286():113-43. PubMed ID: 312318
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of excitation-contraction coupling failure during metabolic inhibition in guinea-pig ventricular myocytes.
    Goldhaber JI; Parker JM; Weiss JN
    J Physiol; 1991 Nov; 443():371-86. PubMed ID: 1822531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of delayed potassium and calcium currents in the rat sympathetic neurone under voltage clamp.
    Belluzzi O; Sacchi O; Wanke E
    J Physiol; 1985 Jan; 358():109-29. PubMed ID: 2580077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Na(+)-Ca2+ exchange in activation of excitation-contraction coupling in rat ventricular myocytes.
    Wasserstrom JA; Vites AM
    J Physiol; 1996 Jun; 493 ( Pt 2)(Pt 2):529-42. PubMed ID: 8782114
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Ca2+ channel in development of tension in heart muscle.
    Morad M; Cleemann L
    J Mol Cell Cardiol; 1987 Jun; 19(6):527-53. PubMed ID: 2442398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.