These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 6314290)
1. Studies on beta-endorphin and membrane-bound calcium interaction using chlorotetracycline (CTC) as a fluorescence probe. Chakrabarti AK; Chatterjee TK; Ghosh JJ Peptides; 1983; 4(3):273-6. PubMed ID: 6314290 [TBL] [Abstract][Full Text] [Related]
2. [Transport of calcium to synaptosomes and subcellular membrane fractions of the brain: effects of opioid peptides]. Kravtsov GM; RiazhskiÄ GG; Orlov SN Biokhimiia; 1982 Dec; 47(12):2006-14. PubMed ID: 6297624 [TBL] [Abstract][Full Text] [Related]
3. Chlorotetracycline-associated fluorescence changes during calcium uptake and release by rat brain synaptosomes. Schaffer WT; Olson MS J Neurochem; 1976 Dec; 27(6):1319-25. PubMed ID: 1003206 [No Abstract] [Full Text] [Related]
4. A Met-enkephalin releaser (kyotorphin)-induced release of plasma membrane-bound Ca2+ from rat brain synaptosomes. Ueda H; Fukushima N; Yoshihara Y; Takagi H Brain Res; 1987 Sep; 419(1-2):197-200. PubMed ID: 3676725 [TBL] [Abstract][Full Text] [Related]
5. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. II. Subcellular localization of the fluorescent probe chlorotetracycline. Chandler DE; Williams JA J Cell Biol; 1978 Feb; 76(2):386-99. PubMed ID: 10605445 [TBL] [Abstract][Full Text] [Related]
7. Effect of beta-endorphin on calcium uptake in the brain. Guerrero-Munoz F; de Lourdes Guerrero M; Way EL; Li CH Science; 1979 Oct; 206(4414):89-91. PubMed ID: 39340 [TBL] [Abstract][Full Text] [Related]
8. Intracellular divalent cation release in pancreatic acinar cells during stimulus-secretion coupling. I. Use of chlorotetracycline as fluorescent probe. Chandler DE; Williams JA J Cell Biol; 1978 Feb; 76(2):371-85. PubMed ID: 10605444 [TBL] [Abstract][Full Text] [Related]
9. Studies of mitochondrial calcium movements using chlorotetracycline. Luthra R; Olson MS Biochim Biophys Acta; 1976 Sep; 440(3):744-58. PubMed ID: 822874 [TBL] [Abstract][Full Text] [Related]
10. Chlortetracycline as a probe of membrane-associated calcium and magnesium: interaction with red cell membranes, phospholipids, and proteins monitored by fluorescence and circular dichroism. Schneider AS; Herz R; Sonenberg M Biochemistry; 1983 Mar; 22(7):1680-6. PubMed ID: 6849877 [TBL] [Abstract][Full Text] [Related]
11. Depolarization-induced increase in synaptosomal membrane calcium monitored by chlorotetracycline fluorescence. Hoss W; Formaniak M Membr Biochem; 1984; 5(3):209-23. PubMed ID: 6748951 [TBL] [Abstract][Full Text] [Related]
12. Changes of intracellular calcium homeostasis in brain cortical structures during anoxia in vivo and in vitro. Lazarewicz JW; Samoilov MO; Semenov DG Resuscitation; 1987 Dec; 15(4):245-55. PubMed ID: 2831597 [TBL] [Abstract][Full Text] [Related]
13. Proteolytic conversion of beta-endorphin by brain synaptic membranes. Characterization of generated beta-endorphin fragments and proposed metabolic pathway. Burbach JP; De Kloet ER; Schotman P; De Wied D J Biol Chem; 1981 Dec; 256(23):12463-9. PubMed ID: 6271786 [TBL] [Abstract][Full Text] [Related]
14. Effect of barbiturates on calcium metabolism in rat brain synaptosomes visualized by chlorotetracycline as a fluorescent chelate probe. Lazarewicz JW; Pastuszko A; Noremberg K; Bertoli E; Lewandowski W Cell Mol Biol Incl Cyto Enzymol; 1981; 27(4):325-32. PubMed ID: 7317914 [No Abstract] [Full Text] [Related]
15. Alteration in calcium-binding activity in synaptosomal membranes from rat brains in association with physical dependence upon ethanol. Virmani M; Majchrowicz E; Swenberg CE; Gangola P; Pant HC Brain Res; 1985 Dec; 359(1-2):371-4. PubMed ID: 4075156 [TBL] [Abstract][Full Text] [Related]
16. Studies on the Ca2+ transport mechanism of human erythrocyte inside-out plasma membrane vesicles. V. Chlortetracycline fluorescence. Gimble JM; Gustin M; Goodman DB; Rasmussen H Biochim Biophys Acta; 1982 Mar; 685(3):253-9. PubMed ID: 6802179 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes. Levesque PC; Hare MF; Atchison WD Toxicol Appl Pharmacol; 1992 Jul; 115(1):11-20. PubMed ID: 1378659 [TBL] [Abstract][Full Text] [Related]
18. Endorphin-regulated protein phosphorylation in brain membranes. Ehrlich YH; Davis LG; Keen P; Brunngraber EG Life Sci; 1980 May; 26(21):1765-72. PubMed ID: 7392812 [No Abstract] [Full Text] [Related]
19. Opposite interactions between alpha- and beta-endorphin fragments with dopamine mediated responses on the rat rectum in vitro. Nijkamp FP; van Ree JM; Nijssen JG; Versluis M; de Wied D Naunyn Schmiedebergs Arch Pharmacol; 1982 Dec; 321(3):213-7. PubMed ID: 6185856 [TBL] [Abstract][Full Text] [Related]
20. Intracellular calcium storage and release in the human platelet. Chlorotetracycline as a continuous monitor. Jy W; Haynes DH Circ Res; 1984 Nov; 55(5):595-608. PubMed ID: 6435905 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]