These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopenicillanic acid: kinetics. Loosemore MJ; Cohen SA; Pratt RF Biochemistry; 1980 Aug; 19(17):3990-5. PubMed ID: 6250581 [TBL] [Abstract][Full Text] [Related]
5. Penicillanic acid sulfone: interaction with RTEM beta-lactamase from Escherichia coli at different pH values. Kemal C; Knowles JR Biochemistry; 1981 Jun; 20(13):3688-95. PubMed ID: 6268141 [TBL] [Abstract][Full Text] [Related]
6. Kinetics of inactivation of beta-lactamase I by 6 beta-bromopenicillanic acid. Knott-Hunziker V; Orlek BS; Sammes PG; Waley SG Biochem J; 1980 Jun; 187(3):797-802. PubMed ID: 6331385 [TBL] [Abstract][Full Text] [Related]
7. Penicillanic acid sulfone: nature of irreversible inactivation of RTEM beta-lactamase from Escherichia coli. Brenner DG; Knowles JR Biochemistry; 1984 Nov; 23(24):5833-9. PubMed ID: 6098299 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and beta-lactamase inhibitory activity of 6-fluoropenicillanic acids. Danelon GO; Laborde M; Mascaretti OA; Boggio SB; Roveri OA Bioorg Med Chem; 1993 Dec; 1(6):447-55. PubMed ID: 8087566 [TBL] [Abstract][Full Text] [Related]
9. Irreversible inactivation of beta-lactamase I from Bacillus cereus by chlorinated 6-spiroepoxypenicillins. Gledhill L; Williams P; Bycroft BW Biochem J; 1991 Jun; 276 ( Pt 3)(Pt 3):801-7. PubMed ID: 1905929 [TBL] [Abstract][Full Text] [Related]
10. Trapping the acyl-enzyme intermediate in beta-lactamase I catalysis. Cartwright SJ; Tan AK; Fink AL Biochem J; 1989 Nov; 263(3):905-12. PubMed ID: 2512916 [TBL] [Abstract][Full Text] [Related]
11. Beta-lactamases as fully efficient enzymes. Determination of all the rate constants in the acyl-enzyme mechanism. Christensen H; Martin MT; Waley SG Biochem J; 1990 Mar; 266(3):853-61. PubMed ID: 2158301 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of Bacillus cereus beta-lactamase I by 6 beta-bromopencillanic acid: mechanism. Cohen SA; Pratt RF Biochemistry; 1980 Aug; 19(17):3996-4003. PubMed ID: 6773559 [TBL] [Abstract][Full Text] [Related]
13. Bacillus cereus 569/H penicillinase serine-44 acylation by diazotized 6-aminopenicillanic acid. Heckler TG; Day RA Biochim Biophys Acta; 1983 Jun; 745(3):292-300. PubMed ID: 6305423 [TBL] [Abstract][Full Text] [Related]
14. The role of the non-conserved residue at position 104 of class A beta-lactamases in susceptibility to mechanism-based inhibitors. Guo F; Huynh J; Dmitrienko GI; Viswanatha T; Clarke AJ Biochim Biophys Acta; 1999 Apr; 1431(1):132-47. PubMed ID: 10209286 [TBL] [Abstract][Full Text] [Related]
15. Characterization of the membrane beta-lactamase in Bacillus cereus 569/H/9. Connolly AK; Waley SG Biochemistry; 1983 Sep; 22(20):4647-51. PubMed ID: 6414514 [TBL] [Abstract][Full Text] [Related]
16. Penicillanic acid sulfone: an unexpected isotope effect in the interaction of 6 alpha- and 6 beta-monodeuterio and of 6,6-dideuterio derivatives with RTEM beta-lactamase from Escherichia coli. Brenner DG; Knowles JR Biochemistry; 1981 Jun; 20(13):3680-7. PubMed ID: 6268140 [TBL] [Abstract][Full Text] [Related]
17. Spectrophotometric determination of inhibitory effects of CP-45899 on beta-lactamase with benzylpenicillin and nitrocefin. Yamabe S J Antimicrob Chemother; 1980 May; 6(3):420-1. PubMed ID: 6249784 [No Abstract] [Full Text] [Related]
18. A structure-based analysis of the inhibition of class A beta-lactamases by sulbactam. Imtiaz U; Billings EM; Knox JR; Mobashery S Biochemistry; 1994 May; 33(19):5728-38. PubMed ID: 8180199 [TBL] [Abstract][Full Text] [Related]
19. The role of the nonconserved residues at position 167 of class A beta-lactamases in susceptibility to mechanism-based inhibitors. Guo F; Dmitrienko GI; Clarke AJ; Viswanatha T Microb Drug Resist; 1996; 2(2):261-8. PubMed ID: 9158770 [TBL] [Abstract][Full Text] [Related]