These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 6315067)

  • 1. The effect of D-penicillamine on human myeloperoxidase, a mechanism for the efficacy of the drug in rheumatoid arthritis.
    Cuperus RA; Muijsers AO; Wever R
    Biochim Biophys Acta; 1983 Nov; 749(1):18-23. PubMed ID: 6315067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of D-penicillamine on myeloperoxidase: formation of compound III and inhibition of the chlorinating activity.
    Cuperus RA; Hoogland H; Wever R; Muijsers AO
    Biochim Biophys Acta; 1987 Mar; 912(1):124-31. PubMed ID: 3030427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Antiarthritic drugs containing thiol groups scavenge hypochlorite and inhibit its formation by myeloperoxidase from human leukocytes. A therapeutic mechanism of these drugs in rheumatoid arthritis?
    Cuperus RA; Muijsers AO; Wever R
    Arthritis Rheum; 1985 Nov; 28(11):1228-33. PubMed ID: 2998407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human hemi-myeloperoxidase. Initial chlorinating activity at neutral pH, compound II and III formation, and stability towards hypochlorous acid and high temperature.
    Zuurbier KW; van den Berg JD; Van Gelder BF; Muijsers AO
    Eur J Biochem; 1992 Apr; 205(2):737-42. PubMed ID: 1315274
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interaction of myeloperoxidase with diclofenac. Inhibition of the chlorinating activity of myeloperoxidase by diclofenac and oxidation of diclofenac to dihydroxyazobenzene by myeloperoxidase.
    Zuurbier KW; Bakkenist AR; Fokkens RH; Nibbering NM; Wever R; Muijsers AO
    Biochem Pharmacol; 1990 Oct; 40(8):1801-8. PubMed ID: 2173589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms by which clofazimine and dapsone inhibit the myeloperoxidase system. A possible correlation with their anti-inflammatory properties.
    van Zyl JM; Basson K; Kriegler A; van der Walt BJ
    Biochem Pharmacol; 1991 Jul; 42(3):599-608. PubMed ID: 1650217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of peroxidase-catalyzed reactions by deferoxamine.
    Klebanoff SJ; Waltersdorph AM
    Arch Biochem Biophys; 1988 Aug; 264(2):600-6. PubMed ID: 2840860
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes converts low density lipoprotein cholesterol into a family of chlorinated sterols.
    Hazen SL; Hsu FF; Duffin K; Heinecke JW
    J Biol Chem; 1996 Sep; 271(38):23080-8. PubMed ID: 8798498
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of the myeloperoxidase-H2O2-Cl- system of neutrophils by indomethacin and other non-steroidal anti-inflammatory drugs.
    Shacter E; Lopez RL; Pati S
    Biochem Pharmacol; 1991 Mar 15-Apr 1; 41(6-7):975-84. PubMed ID: 1848981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Studies on the chlorinating activity of myeloperoxidase.
    Harrison JE; Schultz J
    J Biol Chem; 1976 Mar; 251(5):1371-4. PubMed ID: 176150
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of neutrophil oxidant secretion by D-penicillamine: scavenging of H2O2 and HOCl.
    Ledson MJ; Bucknall RC; Edwards SW
    Ann Rheum Dis; 1992 Mar; 51(3):321-5. PubMed ID: 1315509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. p-Hydroxyphenylacetaldehyde, the major product of L-tyrosine oxidation by the myeloperoxidase-H2O2-chloride system of phagocytes, covalently modifies epsilon-amino groups of protein lysine residues.
    Hazen SL; Gaut JP; Hsu FF; Crowley JR; d'Avignon A; Heinecke JW
    J Biol Chem; 1997 Jul; 272(27):16990-8. PubMed ID: 9202012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper ions and hydrogen peroxide form hypochlorite from NaCl thereby mimicking myeloperoxidase.
    Frenkel K; Blum F; Troll W
    J Cell Biochem; 1986; 30(3):181-93. PubMed ID: 3009503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of the superoxide adduct of myeloperoxidase (compound III) by stimulated human neutrophils and its reactivity with hydrogen peroxide and chloride.
    Winterbourn CC; Garcia RC; Segal AW
    Biochem J; 1985 Jun; 228(3):583-92. PubMed ID: 2992450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxidase-catalyzed halide ion oxidation.
    Dunford HB
    Redox Rep; 2000; 5(4):169-71. PubMed ID: 10994869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chlorination of N-acetyltyrosine with HOCl, chloramines, and myeloperoxidase-hydrogen peroxide-chloride system.
    Drabik G; Naskalski JW
    Acta Biochim Pol; 2001; 48(1):271-5. PubMed ID: 11440179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation.
    Anderson MM; Hazen SL; Hsu FF; Heinecke JW
    J Clin Invest; 1997 Feb; 99(3):424-32. PubMed ID: 9022075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of superoxide on myeloperoxidase kinetics measured with a hydrogen peroxide electrode.
    Kettle AJ; Winterbourn CC
    Biochem J; 1989 Nov; 263(3):823-8. PubMed ID: 2557013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inactivation of myocardial dihydrolipoamide dehydrogenase by myeloperoxidase systems: effect of halides, nitrite and thiol compounds.
    Gutierrez-Correa J; Stoppani AO
    Free Radic Res; 1999 Feb; 30(2):105-17. PubMed ID: 10193578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A kinetic study of the reaction between human myeloperoxidase, hydroperoxides and cyanide. Inhibition by chloride and thiocyanate.
    Bolscher BG; Wever R
    Biochim Biophys Acta; 1984 Jul; 788(1):1-10. PubMed ID: 6331509
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.