These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6315185)

  • 21. Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei.
    Koyama Y; Kayama Y
    Neuroscience; 1993 Aug; 55(4):1117-26. PubMed ID: 8232901
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a serotonergically mediated sympathoexcitatory response to stimulation of medullary raphe nuclei.
    McCall RB
    Brain Res; 1984 Oct; 311(1):131-9. PubMed ID: 6488035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulation of serotonergic neuronal activity: autoreceptors and pacemaker potentials.
    Aghajanian GK
    Adv Biochem Psychopharmacol; 1982; 34():173-81. PubMed ID: 6753509
    [No Abstract]   [Full Text] [Related]  

  • 24. Raphe dorsalis-spinal cord cografts in oculo: electrophysiological evidence for an excitatory serotonergic innervation of transplanted spinal neurons.
    Henschen A; Palmer MR; Olson L
    Brain Res Bull; 1986 Dec; 17(6):801-8. PubMed ID: 3026581
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance.
    Aghajanian GK; Lakoski JM
    Brain Res; 1984 Jul; 305(1):181-5. PubMed ID: 6331598
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Potential role of medullary raphe-spinal neurons in cutaneous vasoconstriction: an in vivo electrophysiological study.
    Nalivaiko E; Blessing WW
    J Neurophysiol; 2002 Feb; 87(2):901-11. PubMed ID: 11826055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spinal pathways mediating tonic, coeruleospinal, and raphe-spinal descending inhibition in the rat.
    Jones SL; Gebhart GF
    J Neurophysiol; 1987 Jul; 58(1):138-59. PubMed ID: 3612222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional properties of neurons in cat trigeminal subnucleus caudalis (medullary dorsal horn). II. Modulation of responses to noxious and nonnoxious stimuli by periaqueductal gray, nucleus raphe magnus, cerebral cortex, and afferent influences, and effect of naloxone.
    Sessle BJ; Hu JW; Dubner R; Lucier GE
    J Neurophysiol; 1981 Feb; 45(2):193-207. PubMed ID: 6257861
    [No Abstract]   [Full Text] [Related]  

  • 29. Differential effects of noxious and non-noxious input on neurones according to location in ventral periaqueductal grey or dorsal raphe nucleus.
    Sanders KH; Klein CE; Mayor TE; Heym C; Handwerker HO
    Brain Res; 1980 Mar; 186(1):83-97. PubMed ID: 7357452
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of serotonin and catecholamines in sympathetic responses evoked by stimulation of rostral medulla.
    Huangfu D; Hwang LJ; Riley TA; Guyenet PG
    Am J Physiol; 1994 Feb; 266(2 Pt 2):R338-52. PubMed ID: 8141388
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlative firing patterns of serotonergic neurons in rat dorsal raphe nucleus.
    Wang RY; Aghajanian GK
    J Neurosci; 1982 Jan; 2(1):11-6. PubMed ID: 6275047
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception.
    Clark FM; Proudfit HK
    Brain Res; 1991 Feb; 540(1-2):105-15. PubMed ID: 1711394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrophysiological evidence for a projection of the periaqueductal gray matter to nucleus raphe magnus in cat and rat.
    Shah Y; Dostrovsky JO
    Brain Res; 1980 Jul; 193(2):534-8. PubMed ID: 6248165
    [No Abstract]   [Full Text] [Related]  

  • 34. New approaches to the study of bulbospinal (B3) serotonergic neurons in the control of blood pressure.
    Chalmers JP; Kapoor V; Macrae IM; Minson JB; Pilowsky P; West MJ
    J Hypertens Suppl; 1985 Dec; 3(4):S5-9. PubMed ID: 2870144
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modification of transmission in the cuneate nucleus by raphe and periaqueductal gray stimulation.
    Jundi AS; Saadé NE; Banna NR; Jabbur SJ
    Brain Res; 1982 Nov; 250(2):349-52. PubMed ID: 6293643
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution and coexistence of neuropeptides in bulbospinal and medullary autonomic pathways.
    Helke CJ; Thor KB; Sasek CA
    Ann N Y Acad Sci; 1990; 579():149-59. PubMed ID: 1692452
    [No Abstract]   [Full Text] [Related]  

  • 37. Collateral projections of single neurons in the nucleus raphe magnus to both the sensory trigeminal nuclei and spinal cord in the rat.
    Li YQ; Takada M; Shinonaga Y; Mizuno N
    Brain Res; 1993 Feb; 602(2):331-5. PubMed ID: 8448674
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Medullary raphĂ© lesions do not reduce descending inhibition of dorsal horn neurones of the cat.
    Hall JG; Duggan AW; Johnson SM; Morton CR
    Neurosci Lett; 1981 Aug; 25(1):25-9. PubMed ID: 6269028
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine.
    Hammond DL; Yaksh TL
    Brain Res; 1984 Apr; 298(2):329-37. PubMed ID: 6326954
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medullary serotonergic neurons are insensitive to 5-MeoDMT and LSD.
    Heym J; Steinfels GF; Jacobs BL
    Eur J Pharmacol; 1982 Jul; 81(4):677-80. PubMed ID: 7117390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.