These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
326 related articles for article (PubMed ID: 6315247)
1. Cytochrome c/H2O2-mediated one electron oxidation of carcinogenic N-fluorenylacetohydroxamic acids to nitroxyl free radicals. Ritter CL; Malejka-Giganti D; Polnaszek CF Chem Biol Interact; 1983 Sep; 46(3):317-34. PubMed ID: 6315247 [TBL] [Abstract][Full Text] [Related]
2. Free radicals in arylamine carcinogenesis. Floyd RA Natl Cancer Inst Monogr; 1981 Dec; (58):123-31. PubMed ID: 6281648 [TBL] [Abstract][Full Text] [Related]
3. Activation of the carcinogen N-hydroxy-N-(2-fluorenyl)benzamide via chemical and enzymatic oxidations. Comparison to oxidations of the structural analogue N-hydroxy-N-(2-fluorenyl)acetamide. Malejka-Giganti D; Ritter CL; Decker RW Chem Res Toxicol; 1992; 5(4):520-7. PubMed ID: 1327249 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of HRP-catalyzed nitrite oxidation by H Samuni A; Maimon E; Goldstein S Free Radic Biol Med; 2017 Jul; 108():832-839. PubMed ID: 28495446 [TBL] [Abstract][Full Text] [Related]
5. Evidence for free radical formation during the oxidation of 2'-7'-dichlorofluorescin to the fluorescent dye 2'-7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Rota C; Chignell CF; Mason RP Free Radic Biol Med; 1999 Oct; 27(7-8):873-81. PubMed ID: 10515592 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of horseradish peroxidase catalyzed epinephrine oxidation: obligatory role of endogenous O2- and H2O2. Adak S; Bandyopadhyay U; Bandyopadhyay D; Banerjee RK Biochemistry; 1998 Dec; 37(48):16922-33. PubMed ID: 9836585 [TBL] [Abstract][Full Text] [Related]
7. Peroxidative metabolism of a carcinogen, N-hydroxy-N-2-fluorenylacetamide, by rat uterus and mammary gland in vitro. Malejka-Giganti D; Ritter CL; Decker RW; Suilman JM Cancer Res; 1986 Dec; 46(12 Pt 1):6200-6. PubMed ID: 3779640 [TBL] [Abstract][Full Text] [Related]
8. Low catalytic turnover of horseradish peroxidase in thiocyanate oxidation. Evidence for concurrent inactivation by cyanide generated through one-electron oxidation of thiocyanate. Adak S; Mazumdar A; Banerjee RK J Biol Chem; 1997 Apr; 272(17):11049-56. PubMed ID: 9110998 [TBL] [Abstract][Full Text] [Related]
9. Peroxidative metabolism of carcinogenic N-arylhydroxamic acids: implications for tumorigenesis. Malejka-Giganti D; Ritter CL Environ Health Perspect; 1994 Oct; 102 Suppl 6(Suppl 6):75-81. PubMed ID: 7889863 [TBL] [Abstract][Full Text] [Related]
10. The mechanism underlying nitroxyl and nitric oxide formation from hydroxamic acids. Samuni Y; Samuni U; Goldstein S Biochim Biophys Acta; 2012 Oct; 1820(10):1560-6. PubMed ID: 22634736 [TBL] [Abstract][Full Text] [Related]
11. An EPR investigation of human methaemoglobin oxidation by hydrogen peroxide: methods to quantify all paramagnetic species observed in the reaction. Svistunenko DA; Patel RP; Wilson MT Free Radic Res; 1996 Apr; 24(4):269-80. PubMed ID: 8731011 [TBL] [Abstract][Full Text] [Related]
12. Formation of long-lived radicals on proteins by radical transfer from heme enzymes--a common process? Ostdal H; Andersen HJ; Davies MJ Arch Biochem Biophys; 1999 Feb; 362(1):105-12. PubMed ID: 9917334 [TBL] [Abstract][Full Text] [Related]
13. Metabolism of the carcinogen N-hydroxy-N-2-fluorenylacetamide by rat peritoneal neutrophils. Malejka-Giganti D; Ritter CL; Willmott LD Carcinogenesis; 1993 Mar; 14(3):341-6. PubMed ID: 8453709 [TBL] [Abstract][Full Text] [Related]
14. Hydrogen atom abstraction of 3,5-disubstituted analogues of paracetamol by horseradish peroxidase and cytochrome P450. Bessems JG; de Groot MJ; Baede EJ; te Koppele JM; Vermeulen NP Xenobiotica; 1998 Sep; 28(9):855-75. PubMed ID: 9764928 [TBL] [Abstract][Full Text] [Related]
15. Obligatory free radical intermediate in the oxidative activation of the carcinogen N-hydroxy-2-acetylaminofluorene. Floyd RA; Soong LM Biochim Biophys Acta; 1977 Jun; 498(1):244-9. PubMed ID: 884152 [TBL] [Abstract][Full Text] [Related]
16. Pathobiologic and metabolic aspects of mammary gland tumorigenesis by N-substituted aryl compounds. Malejka-Giganti D; Ritter CL; Ryzewski CN Environ Health Perspect; 1983 Mar; 49():175-83. PubMed ID: 6339224 [TBL] [Abstract][Full Text] [Related]
17. One-electron oxidation of acetohydroxamic acid: the intermediacy of nitroxyl and peroxynitrite. Samuni A; Goldstein S J Phys Chem A; 2011 Apr; 115(14):3022-8. PubMed ID: 21425838 [TBL] [Abstract][Full Text] [Related]
18. HRP-catalyzed bioactivation of carcinogenic hydroxamic acids. The greater reactivity of glycolyl- versus acetyl-derived hydroxamic acids. Corbett MD; Corbett BR Chem Biol Interact; 1987; 63(3):249-64. PubMed ID: 3677221 [TBL] [Abstract][Full Text] [Related]
19. Electron spin resonance study of free radicals formed from a procyanidin-rich pine (Pinus maritima) bark extract, pycnogenol. Guo Q; Zhao B; Packer L Free Radic Biol Med; 1999 Dec; 27(11-12):1308-12. PubMed ID: 10641725 [TBL] [Abstract][Full Text] [Related]
20. Oxidations of the carcinogen N-hydroxy-N-(2-fluorenyl)acetamide by enzymatically or chemically generated oxidants of chloride and bromide. Ritter CL; Malejka-Giganti D Chem Res Toxicol; 1989; 2(5):325-33. PubMed ID: 2562426 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]