These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 6315944)

  • 1. The small-intestinal Na+, D-glucose cotransporter: an asymmetric gated channel (or pore) responsive to delta psi.
    Kessler M; Semenza G
    J Membr Biol; 1983; 76(1):27-56. PubMed ID: 6315944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phlorizin as a probe of the small-intestinal Na+,D-glucose cotransporter. A model.
    Toggenburger G; Kessler M; Semenza G
    Biochim Biophys Acta; 1982 Jun; 688(2):557-71. PubMed ID: 7201854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mechanism of Na+-dependent D-glucose transport.
    Hopfer U; Groseclose R
    J Biol Chem; 1980 May; 255(10):4453-62. PubMed ID: 7372586
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Na(+)-dependent proline carrier, of eel intestinal brush-border membrane, sequentially binds proline and then Na+.
    Maffia M; Cassano G; Marcucci D; Vilella S; Storelli C
    Biochim Biophys Acta; 1990 Aug; 1027(1):8-16. PubMed ID: 2397223
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemistry of the Na+, D-glucose cotransporter of the small-intestinal brush-border membrane. The state of the art in 1984.
    Semenza G; Kessler M; Hosang M; Weber J; Schmidt U
    Biochim Biophys Acta; 1984 Sep; 779(3):343-79. PubMed ID: 6383475
    [No Abstract]   [Full Text] [Related]  

  • 6. The mechanistic nature of the membrane potential dependence of sodium-sugar cotransport in small intestine.
    Restrepo D; Kimmich GA
    J Membr Biol; 1985; 87(2):159-72. PubMed ID: 4078884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Na+-dependent, electroneutral L-ascorbate transport across brush border membrane vesicles from guinea pig small intestine.
    Siliprandi L; Vanni P; Kessler M; Semenza G
    Biochim Biophys Acta; 1979 Mar; 552(1):129-42. PubMed ID: 435492
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Similarity in effects of Na+ gradients and membrane potentials on D-glucose transport by, and phlorizin binding to, vesicles derived from brush borders of rattit intestinal mucosal cells.
    Toggenburger G; Kessler M; Rothstein A; Semenza G; Tannenbaum C
    J Membr Biol; 1978 May; 40(3):269-90. PubMed ID: 660646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of sodium D-glucose cotransport in bovine intestinal brush border vesicles.
    Kaunitz JD; Wright EM
    J Membr Biol; 1984; 79(1):41-51. PubMed ID: 6737463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of multiple sodium ions in intestinal d-glucose transport.
    Kaunitz JD; Gunther R; Wright EM
    Proc Natl Acad Sci U S A; 1982 Apr; 79(7):2315-8. PubMed ID: 6954543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of Na+-dependent D-glucose transport.
    Hopfer U
    J Supramol Struct; 1977; 7(1):1-13. PubMed ID: 604695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 4-Azidophlorizin, a high affinity probe and photoaffinity label for the glucose transporter in brush border membranes.
    Gibbs EM; Hosang M; Reber BF; Semenza G; Diedrich DF
    Biochim Biophys Acta; 1982 Jun; 688(2):547-56. PubMed ID: 7201853
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the efficiency of energy conversion in sodium-driven D-glucose transport across small intestinal brush border membrane vesicles: an estimation.
    Kessler M; Semenza G
    FEBS Lett; 1979 Dec; 108(1):205-8. PubMed ID: 520547
    [No Abstract]   [Full Text] [Related]  

  • 14. Allosterism and Na(+)-D-glucose cotransport kinetics in rabbit jejunal vesicles: compatibility with mixed positive and negative cooperativities in a homo- dimeric or tetrameric structure and experimental evidence for only one transport protein involved.
    Chenu C; Berteloot A
    J Membr Biol; 1993 Mar; 132(2):95-113. PubMed ID: 8496949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occlusion of sodium by the Na/glucose cotransporter.
    Lowe AG; Hirayama BA
    Biochem Soc Trans; 1994 Aug; 22(3):274S. PubMed ID: 7821533
    [No Abstract]   [Full Text] [Related]  

  • 16. Voltage-clamp studies of the Na+/glucose cotransporter cloned from rabbit small intestine.
    Birnir B; Loo DD; Wright EM
    Pflugers Arch; 1991 Mar; 418(1-2):79-85. PubMed ID: 2041729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of sodium ion in transport of folic acid in the small intestine.
    Zimmerman J; Selhub J; Rosenberg IH
    Am J Physiol; 1986 Aug; 251(2 Pt 1):G218-22. PubMed ID: 2426969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Na+/D-glucose co-transporter of the small-intestinal brush-border membrane.
    Semenza G
    Biochem Soc Trans; 1982 Feb; 10(1):7. PubMed ID: 7199493
    [No Abstract]   [Full Text] [Related]  

  • 19. Cotransport of 2-methyl-aminoisobutyric acid and chloride in rabbit small intestine.
    Munck LK
    Am J Physiol; 1993 Nov; 265(5 Pt 1):G979-86. PubMed ID: 8238527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Secondary active nutrient transport in membrane vesicles: theoretical basis for use of isotope exchange at equilibrium and contributions to transport mechanisms.
    Hopfer U
    Biochem Soc Symp; 1985; 50():151-68. PubMed ID: 3915868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.