These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 6316086)

  • 1. Use of 1,N6-etheno-cAMP as a fluorescent probe to study cAMP-dependent protein kinase.
    White HD; Smith SB; Krebs EG
    Methods Enzymol; 1983; 99():162-7. PubMed ID: 6316086
    [No Abstract]   [Full Text] [Related]  

  • 2. 1,N6-Etheno-2-aza-adenosine 3', 5'-cyclic phosphate: human erythrocyte membrane binding and activation of membrane protein kinase.
    Tsukamoto T; Sonenberg M
    J Cyclic Nucleotide Res; 1979; 5(2):153-9. PubMed ID: 221554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoaffinity labeling of the regulatory subunit of cAMP-dependent protein kinase.
    Walter U; Greengard P
    Methods Enzymol; 1983; 99():154-62. PubMed ID: 6316085
    [No Abstract]   [Full Text] [Related]  

  • 4. Reversible autophosphorylation of type II cAMP-dependent protein kinase: distinction between intramolecular and intermolecular reactions.
    Erlichman J; Rangel-Aldao R; Rosen OM
    Methods Enzymol; 1983; 99():176-86. PubMed ID: 6316088
    [No Abstract]   [Full Text] [Related]  

  • 5. Direct cytochemical localization of catalytic subunits dissociated from cAMP-dependent protein kinase in Reuber H-35 hepatoma cells. II. Temporal and spatial kinetics.
    Byus CV; Fletcher WH
    J Cell Biol; 1982 Jun; 93(3):727-34. PubMed ID: 6288733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequence-selective DNA binding to the regulatory subunit of cAMP-dependent protein kinase.
    Wu JC; Wang JH
    J Biol Chem; 1989 Jun; 264(17):9989-93. PubMed ID: 2542338
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluorescence resonance energy transfer within a heterochromatic cAMP-dependent protein kinase holoenzyme under equilibrium conditions: new insights into the conformational changes that result in cAMP-dependent activation.
    Johnson DA; Leathers VL; Martinez AM; Walsh DA; Fletcher WH
    Biochemistry; 1993 Jun; 32(25):6402-10. PubMed ID: 8390856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of two fluorescent cAMP analogues to type I and II regulatory subunits of cAMP-dependent protein kinases.
    Mucignat-Caretta C; Caretta A
    Biochim Biophys Acta; 1997 Jun; 1357(1):81-90. PubMed ID: 9202178
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stoichiometry of cAMP and 1,N6-etheno-cAMP binding to protein kinase.
    Builder SE; Beavo JA; Krebs EG
    J Biol Chem; 1980 Mar; 255(6):2350-4. PubMed ID: 6244276
    [No Abstract]   [Full Text] [Related]  

  • 10. Use of NMR and EPR to study cAMP-dependent protein kinase.
    Mildvan AS; Rosevear PR; Granot J; O'Brian CA; Bramson HN; Kaiser ET
    Methods Enzymol; 1983; 99():93-119. PubMed ID: 6316105
    [No Abstract]   [Full Text] [Related]  

  • 11. Regulatory subunits of bovine heart and rabbit skeletal muscle cAMP-dependent protein kinase isozymes.
    Rannels SR; Beasley A; Corbin JD
    Methods Enzymol; 1983; 99():55-62. PubMed ID: 6316100
    [No Abstract]   [Full Text] [Related]  

  • 12. Mapping cyclic AMP binding sites on type I and type II cyclic AMP-dependent protein kinases using 2-substituted derivatives of cyclic AMP.
    Yagura TS; Sigman CC; Sturm PA; Reist EJ; Johnson HL; Miller JP
    Biochem Biophys Res Commun; 1980 Jan; 92(2):463-7. PubMed ID: 6243941
    [No Abstract]   [Full Text] [Related]  

  • 13. Determination of the cAMP-dependent protein kinase activity ratio in intact tissues.
    Corbin JD
    Methods Enzymol; 1983; 99():227-32. PubMed ID: 6316092
    [No Abstract]   [Full Text] [Related]  

  • 14. Protein modulation of cyclic nucleotide-dependent protein kinases.
    Walton GM; Gill GN
    Methods Enzymol; 1983; 99():206-12. PubMed ID: 6316090
    [No Abstract]   [Full Text] [Related]  

  • 15. Mechanism of activation of protein kinase I from rabbit skeletal muscle. Investigation with agarose-immobilized cAMP derivatives.
    Rieke E; Hoppe J; Wagner KG
    Eur J Biochem; 1978 Feb; 83(2):419-26. PubMed ID: 204480
    [No Abstract]   [Full Text] [Related]  

  • 16. Alteration of the regulatory subunit of type 1 cAMP-dependent protein kinase in mutant Y1 adrenal cells resistant to 8-bromoadenosine 3':5'-monophosphate.
    Doherty PJ; Tsao J; Schimmer BP; Mumby MC; Beavo JA
    J Biol Chem; 1982 May; 257(10):5877-83. PubMed ID: 6279618
    [No Abstract]   [Full Text] [Related]  

  • 17. Intracellular kinetics of free catalytic units dissociated from adenosine 3',5'-monophosphate-dependent protein kinase in adrenocortical tumor cells (Y-1).
    Murray SA; Byus CV; Fletcher WH
    Endocrinology; 1985 Jan; 116(1):364-74. PubMed ID: 2981071
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Apparent constants for the interaction of regulatory and catalytic subunit of cAMP-dependent protein kinase I and II.
    Hofmann F
    J Biol Chem; 1980 Feb; 255(4):1559-64. PubMed ID: 6243641
    [No Abstract]   [Full Text] [Related]  

  • 19. Preparation of partially purified protein kinase inhibitor.
    Schlender KK; Tyma JL; Reimann EM
    Methods Enzymol; 1983; 99():77-80. PubMed ID: 6316103
    [No Abstract]   [Full Text] [Related]  

  • 20. Cyclic AMP-dependent protein kinase I: cyclic nucleotide binding, structural changes, and release of the catalytic subunits.
    Smith SB; White HD; Siegel JB; Krebs EG
    Proc Natl Acad Sci U S A; 1981 Mar; 78(3):1591-5. PubMed ID: 6262817
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.