These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 631631)
1. Comparison of 14C-labelled polyethylene glycol (PEG) with carrier PEG and 14C-PEG alone as a volume indicator in the human jejunum. Helman CA; Barbezat GO Gut; 1978 Feb; 19(2):155-6. PubMed ID: 631631 [TBL] [Abstract][Full Text] [Related]
2. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. Sutton SC; Rinaldi MT; Vukovinsky KE AAPS PharmSci; 2001; 3(3):E25. PubMed ID: 11741276 [TBL] [Abstract][Full Text] [Related]
3. A comparison of stable and 14 C-labelled polyethylene glycol as volume indicators in the human jejunum. Wingate DL; Sandberg RJ; Phillips SF Gut; 1972 Oct; 13(10):812-5. PubMed ID: 5087072 [TBL] [Abstract][Full Text] [Related]
4. Inhibition of water and electrolyte absorption by polyethylene glycol (PEG). Davis GR; Santa Ana CA; Morawski SG; Fordtran JS Gastroenterology; 1980 Jul; 79(1):35-9. PubMed ID: 7380220 [TBL] [Abstract][Full Text] [Related]
5. Paracellular permeability of extracellular space markers across rat jejunum in vitro. Indication of a transepithelial fluid circuit. Munck BG; Rasmussen SN J Physiol; 1977 Oct; 271(2):473-88. PubMed ID: 411915 [TBL] [Abstract][Full Text] [Related]
6. Appearance of 14C-polyethylene glycol 4000 in intestinal venous blood: influence of osmolarity and laxatives, effect on net water flux determination. Winne D; Görig H Naunyn Schmiedebergs Arch Pharmacol; 1982 Nov; 321(2):149-56. PubMed ID: 7155194 [TBL] [Abstract][Full Text] [Related]
7. A comparison of stable and 3H- labelled polyethylene glycol 4000 as non-absorbable water phase markers in the human ileum and faeces. Krag E; Krag B; Lenz K Scand J Gastroenterol; 1975; 10(1):105-8. PubMed ID: 1091962 [TBL] [Abstract][Full Text] [Related]
8. Validation of polyethylene glycol 3350 as a poorly absorbable marker for intestinal perfusion studies. Schiller LR; Santa Ana CA; Porter J; Fordtran JS Dig Dis Sci; 1997 Jan; 42(1):1-5. PubMed ID: 9009108 [TBL] [Abstract][Full Text] [Related]
9. Extracellular space determination in rat small intestine by using markers of different molecular weights. Esposito G; Faelli A; Tosco M; Burlini N; Capraro V Pflugers Arch; 1979 Oct; 382(1):67-71. PubMed ID: 574940 [TBL] [Abstract][Full Text] [Related]
10. Regulation of polyethylene glycol 400 intestinal permeability by endogenous and exogenous prostanoids. Influence of non-steroidal anti-inflammatory drugs. Krugliak P; Hollander D; Le K; Ma T; Dadufalza VD; Katz KD Gut; 1990 Apr; 31(4):417-21. PubMed ID: 2338266 [TBL] [Abstract][Full Text] [Related]
11. Atrial natriuretic peptide and water and electrolyte transport in the human jejunum. Brunner J; Lübcke R; Barbezat GO; Yandle TG; Espiner EA Gut; 1991 Jun; 32(6):635-9. PubMed ID: 1648026 [TBL] [Abstract][Full Text] [Related]
12. Polyethylene glycol 900 permeability of rat intestinal and colonic segments in vivo and brush border membrane vesicles in vitro. Hollander D; Koyama S; Dadufalza V; Tran DQ; Krugliak P; Ma T; Ling KY J Lab Clin Med; 1989 Apr; 113(4):505-15. PubMed ID: 2703761 [TBL] [Abstract][Full Text] [Related]
13. Triple-lumen perfusion of the canine jejunum. Barbezat GO Gastroenterology; 1980 Dec; 79(6):1243-5. PubMed ID: 7439632 [TBL] [Abstract][Full Text] [Related]
14. Absorption of polyethylene glycol oligomers (330-1 122 Da) is greater in the jejunum than in the ileum of rats. Kim M J Nutr; 1996 Sep; 126(9):2172-8. PubMed ID: 8814205 [TBL] [Abstract][Full Text] [Related]
15. Independence of net water flux from paracellular permeability in the intestine of Fundulus heteroclitus, a euryhaline teleost. Wood CM; Grosell M J Exp Biol; 2012 Feb; 215(Pt 3):508-17. PubMed ID: 22246259 [TBL] [Abstract][Full Text] [Related]
16. Measuring intestinal fluid transport in vitro: Gravimetric method versus non-absorbable marker. Whittamore JM; Genz J; Grosell M; Wilson RW Comp Biochem Physiol A Mol Integr Physiol; 2016 Apr; 194():27-36. PubMed ID: 26794612 [TBL] [Abstract][Full Text] [Related]
17. Comparison of nonabsorbable markers Poly R-478 and [14C]PEG-4,000 for use in developmental absorption studies. Stahl GE; Fayer JC; Ling SC; Watkins JB J Pediatr Gastroenterol Nutr; 1991 May; 12(4):485-93. PubMed ID: 1865284 [TBL] [Abstract][Full Text] [Related]
18. Lactose flux occurs by differing mechanisms in the colon and jejunum of newborn piglets. Murray RD; Ailabouni AH; Powers PA; Heitlinger LA; Li BU; McClung HJ; Sloan HR Pediatr Res; 1993 Jun; 33(6):568-72. PubMed ID: 8378113 [TBL] [Abstract][Full Text] [Related]
19. Biliary excretion of different sized polyethylene glycols in the cat. Friman S; Leandersson P; Tagesson C; Svanvik J J Hepatol; 1990 Sep; 11(2):215-20. PubMed ID: 2123915 [TBL] [Abstract][Full Text] [Related]
20. Water transport in native and transplanted porcine jejunum. Emil S; Kanno S; Kosi M; Nguyen P; Nio M; Anthone G; Atkinson J J Surg Res; 1996 Mar; 61(2):339-42. PubMed ID: 8656605 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]