BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 6317015)

  • 1. Energetics of ribonuclease A catalysis. 3. Temperature dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate.
    Eftink MR; Biltonen RL
    Biochemistry; 1983 Oct; 22(22):5140-50. PubMed ID: 6317015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Energetics of ribonuclease A catalysis. 1. pH, ionic strength, and solvent isotope dependence of the hydrolysis of cytidine cyclic 2',3'-phosphate.
    Eftink MR; Biltonen RL
    Biochemistry; 1983 Oct; 22(22):5123-34. PubMed ID: 6317013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of ribonuclease A catalysis. 2. Nonenzymatic hydrolysis of cytidine cyclic 2',3'-phosphate.
    Eftink MR; Biltonen RL
    Biochemistry; 1983 Oct; 22(22):5134-40. PubMed ID: 6317014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of the structure of water on the hydrolysis of cytidine 2',3'-phosphate catalysed by bovine pancreatic ribonuclease A.
    Biosca JA; Travers F; Cuchillo CM
    Eur J Biochem; 1982 May; 124(1):151-6. PubMed ID: 6282586
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pH dependence of the thermodynamics of the interaction of 3'-cytidine monophosphate with ribonuclease A.
    Flogel M; Biltonen RL
    Biochemistry; 1975 Jun; 14(12):2610-5. PubMed ID: 238566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An isothermal titration calorimetric method to determine the kinetic parameters of enzyme catalytic reaction by employing the product inhibition as probe.
    Cai L; Cao A; Lai L
    Anal Biochem; 2001 Dec; 299(1):19-23. PubMed ID: 11726179
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature effects on the catalytic efficiency, rate enhancement, and transition state affinity of cytidine deaminase, and the thermodynamic consequences for catalysis of removing a substrate "anchor".
    Snider MJ; Gaunitz S; Ridgway C; Short SA; Wolfenden R
    Biochemistry; 2000 Aug; 39(32):9746-53. PubMed ID: 10933791
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enthalpy-entropy compensation and heat capacity changes for protein-ligand interactions: general thermodynamic models and data for the binding of nucleotides to ribonuclease A.
    Eftink MR; Anusiem AC; Biltonen RL
    Biochemistry; 1983 Aug; 22(16):3884-96. PubMed ID: 6615806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermodynamic studies on the hydrolysis of cytidine 2':3'-phosphate by bovine pancreatic ribonuclease A. A possible effect of the change of the structure of water.
    Biosca JA; Cuchillo CM
    Biochem J; 1980 Sep; 189(3):655-7. PubMed ID: 7213352
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The magnitude of electrostatic interactions in inhibitor binding and during catalysis by ribonuclease A.
    Flogel M; Albert A; Biltonen R
    Biochemistry; 1975 Jun; 14(12):2616-21. PubMed ID: 238567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytidylate cyclase activity in mouse tissues: the enzymatic conversion of cytidine 5'-triphosphate to cytidine 3',5'-cyclic monophosphate (cyclic CMP).
    Yamamoto I; Takai T; Mori S
    Biochim Biophys Acta; 1989 Dec; 993(2-3):191-8. PubMed ID: 2557087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Studies on the enzymatic and physicochemical behaviour of the trichloroacetic acid-treated and untreated bovine pancreatic ribonuclease.
    Sagar AJ; Subbiah V; Pandit MW
    Biochim Biophys Acta; 1989 Apr; 995(2):144-50. PubMed ID: 2539197
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of cytidine 3'-monophosphate and uridine 3'-monophosphate with ribonuclease a at the denaturation temperature.
    Schwarz FP
    Biochemistry; 1988 Nov; 27(22):8429-36. PubMed ID: 3242592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The active site and mechanism of action of bovine pancreatic ribonuclease. 3. The pH-dependence of the kinetic parameters for the hydrolysis of cytidine 2',3'-phosphate.
    HERRIES DG; MATHIAS AP; RABIN BR
    Biochem J; 1962 Oct; 85(1):127-34. PubMed ID: 13954073
    [No Abstract]   [Full Text] [Related]  

  • 15. Temperature dependence of the backbone dynamics of ribonuclease A in the ground state and bound to the inhibitor 5'-phosphothymidine (3'-5')pyrophosphate adenosine 3'-phosphate.
    Kovrigin EL; Cole R; Loria JP
    Biochemistry; 2003 May; 42(18):5279-91. PubMed ID: 12731869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ternary borate-nucleoside complex stabilization by ribonuclease A demonstrates phosphate mimicry.
    Gabel SA; London RE
    J Biol Inorg Chem; 2008 Feb; 13(2):207-17. PubMed ID: 17957392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis.
    Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N
    Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-steady-state and stopped-flow fluorescence analysis of Escherichia coli ribonuclease III: insights into mechanism and conformational changes associated with binding and catalysis.
    Campbell FE; Cassano AG; Anderson VE; Harris ME
    J Mol Biol; 2002 Mar; 317(1):21-40. PubMed ID: 11916377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of the temperature dependence of hammerhead ribozyme catalysis.
    Peracchi A
    Nucleic Acids Res; 1999 Jul; 27(14):2875-82. PubMed ID: 10390528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.