These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 6317085)
1. Is activation of the granulocyte by concanavalin-A a reversible process? Cohen HJ; Whitin JC; Chovaniec ME; Tape EH; Simons ER Blood; 1984 Jan; 63(1):114-20. PubMed ID: 6317085 [TBL] [Abstract][Full Text] [Related]
2. Con-A-stimulated superoxide production by granulocytes: reversible activation of NADPH oxidase. Cohen HJ; Chovaniec ME; Wilson MK; Newburger PE Blood; 1982 Nov; 60(5):1188-94. PubMed ID: 6289943 [TBL] [Abstract][Full Text] [Related]
3. Activation of human granulocytes by arachidonic acid: its use and limitations for investigating granulocyte functions. Cohen HJ; Chovaniec ME; Takahashi K; Whitin JC Blood; 1986 Apr; 67(4):1103-9. PubMed ID: 3006830 [TBL] [Abstract][Full Text] [Related]
4. Dissociation between aggregation and superoxide production in human granulocytes. Whitin JC; Cohen HJ J Immunol; 1985 Feb; 134(2):1206-11. PubMed ID: 2981262 [TBL] [Abstract][Full Text] [Related]
5. Activation of neutrophil superoxide production by concanavalin A can occur at low levels of intracellular ionized calcium. Whitin JC; Takahashi K; Cohen HJ Blood; 1987 Mar; 69(3):762-8. PubMed ID: 3028535 [TBL] [Abstract][Full Text] [Related]
6. Phorbol myristate acetate potentiates superoxide release and membrane depolarization without affecting an increase in cytoplasmic free calcium in human granulocytes stimulated by the chemotactic peptide, lectins and the calcium ionophore. Ohsaka A; Saito M; Suzuki I; Miura Y; Takaku F; Kitagawa S Biochim Biophys Acta; 1988 Jun; 941(1):19-30. PubMed ID: 2835980 [TBL] [Abstract][Full Text] [Related]
7. Effect of the spin trap 5,5 dimethyl-1-pyrroline-N-oxide (DMPO) on human neutrophil function: novel inhibition of neutrophil stimulus-response coupling? Britigan BE; Hamill DR Free Radic Biol Med; 1990; 8(5):459-70. PubMed ID: 2174815 [TBL] [Abstract][Full Text] [Related]
8. Opsonized zymosan-stimulated granulocytes-activation and activity of the superoxide-generating system and membrane potential changes. Cohen HJ; Newburger PE; Chovaniec ME; Whitin JC; Simons ER Blood; 1981 Nov; 58(5):975-82. PubMed ID: 6271311 [TBL] [Abstract][Full Text] [Related]
9. Functional maturation of membrane potential changes and superoxide-producing capacity during differentiation of human granulocytes. Kitagawa S; Ohta M; Nojiri H; Kakinuma K; Saito M; Takaku F; Miura Y J Clin Invest; 1984 Apr; 73(4):1062-71. PubMed ID: 6200501 [TBL] [Abstract][Full Text] [Related]
10. The effect of various stimuli and calcium antagonists on the fluorescence response of chlorotetracycline-loaded human neutrophils. Smolen JE; Weissmann G Biochim Biophys Acta; 1982 Apr; 720(2):172-80. PubMed ID: 6282339 [TBL] [Abstract][Full Text] [Related]
11. Signal transduction in N-formyl-methionyl-leucyl-phenylalanine and concanavalin A stimulated human neutrophils: superoxide production without a rise in intracellular free calcium. Liang SL; Woodlock TJ; Whitin JC; Lichtman MA; Segel GB J Cell Physiol; 1990 Nov; 145(2):295-302. PubMed ID: 2174064 [TBL] [Abstract][Full Text] [Related]
12. Transmembrane potential changes associated with superoxide release from human granulocytes. Jones GS; VanDyke K; Castranova V J Cell Physiol; 1981 Jan; 106(1):75-83. PubMed ID: 6259186 [TBL] [Abstract][Full Text] [Related]
13. Effect of substance P on superoxide anion and IL-8 production by human PMNL. Serra MC; Calzetti F; Ceska M; Cassatella MA Immunology; 1994 May; 82(1):63-9. PubMed ID: 7519174 [TBL] [Abstract][Full Text] [Related]
14. Chemiluminescence response of cervine neutrophils to various stimuli. Murata H; Imada T J Vet Med Sci; 1996 Apr; 58(4):363-4. PubMed ID: 8741271 [TBL] [Abstract][Full Text] [Related]
15. Activation of the respiratory burst and tyrosine phosphorylation of proteins in human neutrophils: no direct relationship and involvement of protein kinase C-dependent and -independent signaling pathways. Azuma EK; Kitagawa S; Yuo A; Mizoguchi H; Umezawa K; Takaku F; Saito M Biochim Biophys Acta; 1993 Nov; 1179(2):213-23. PubMed ID: 8218364 [TBL] [Abstract][Full Text] [Related]
16. Receptor-mediated O2- release by alveolar macrophages and peripheral blood monocytes from smokers and nonsmokers. Priming and triggering effects of monomeric IgG, concanavalin A, N-formyl-methionyl-leucyl-phenylalanine, phorbol myristate acetate, and cytochalasin D. Nakashima H; Ando M; Sugimoto M; Suga M; Soda K; Araki S Am Rev Respir Dis; 1987 Aug; 136(2):310-5. PubMed ID: 3039878 [TBL] [Abstract][Full Text] [Related]
17. Effect of cetiedil on the superoxide-generating system of porcine neutrophils. Chiba T; Asakura T; Kakinuma K J Biochem; 1985 Aug; 98(2):355-61. PubMed ID: 2999093 [TBL] [Abstract][Full Text] [Related]
18. Effects of in vitro and in vivo supplementation with zinc on superoxide anion production in leukocytes. Nakamura T; Shiraishi N; Aono K Physiol Chem Phys Med NMR; 1987; 19(3):147-51. PubMed ID: 2831552 [TBL] [Abstract][Full Text] [Related]
19. Effect of neutrophil activating substances on intracellular generation of phagocyte chemiluminescence by means of luminol-bound microspheres. Takeuchi A; Shimizu A; Hashimoto T; Uchida T; Masuko S; Hosaka S Int J Tissue React; 1988; 10(3):169-75. PubMed ID: 3225134 [TBL] [Abstract][Full Text] [Related]
20. Heparin inhibits FMLP and Con-A dependent activation of human polymorphonuclear leucocytes in vitro. Laghi-Pasini F; Pasqui AL; Ceccatelli L; Di Perri T Int J Tissue React; 1983; 5(2):145-51. PubMed ID: 6311768 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]