These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 6317368)
1. The influence of hyperthyroidism and hypothyroidism on alpha- and beta-adrenergic receptor systems and adrenergic responsiveness. Bilezikian JP; Loeb JN Endocr Rev; 1983; 4(4):378-88. PubMed ID: 6317368 [TBL] [Abstract][Full Text] [Related]
2. The influence of hyperthyroidism and hypothyroidism on the beta-adrenergic responsiveness of the turkey erythrocyte. Bilezikian JP; Loeb JN; Gammon DE J Clin Invest; 1979 Feb; 63(2):184-92. PubMed ID: 219032 [TBL] [Abstract][Full Text] [Related]
3. G proteins, beta-adrenoreceptors and beta-adrenergic responsiveness in immature and adult rat ventricular myocardium: influence of neonatal hypo- and hyperthyroidism. Novotny J; Bourová L; Málková O; Svoboda P; Kolár F J Mol Cell Cardiol; 1999 Apr; 31(4):761-72. PubMed ID: 10329204 [TBL] [Abstract][Full Text] [Related]
4. Adrenergic regulation of lipolysis in fat cells from hyperthyroid and hypothyroid patients. Wahrenberg H; Wennlund A; Arner P J Clin Endocrinol Metab; 1994 Apr; 78(4):898-903. PubMed ID: 8157718 [TBL] [Abstract][Full Text] [Related]
5. Effect of changes in thyroid state on atrial alpha- and beta-adrenoceptors, adenylate cyclase activity, and catecholamine levels in the rat. Ishac EJ; Pennefather JN; Handberg GM J Cardiovasc Pharmacol; 1983; 5(3):396-405. PubMed ID: 6191138 [TBL] [Abstract][Full Text] [Related]
6. Role of thyroid status in the ontogeny of adrenergic cell signaling in rat brain: beta receptors, adenylate cyclase, ornithine decarboxylase and c-fos protooncogene expression. Wagner JP; Seidler FJ; Lappi SE; McCook EC; Slotkin TA J Pharmacol Exp Ther; 1994 Oct; 271(1):472-83. PubMed ID: 7965748 [TBL] [Abstract][Full Text] [Related]
8. In vivo desensitization of the beta, but not the alpha 2-adrenoreceptor-coupled-adenylate cyclase system in hamster white adipocytes after administration of epinephrine. Pecquery R; Leneveu MC; Giudicelli Y Endocrinology; 1984 May; 114(5):1576-83. PubMed ID: 6325124 [TBL] [Abstract][Full Text] [Related]
9. Effects of celiprolol (REV 5320), a new cardioselective beta-adrenoceptor antagonist, on in vitro adenylate cyclase, alpha- and beta-adrenergic receptor binding and lipolysis. Van Inwegen RG; Khandwala A; Weinryb I; Pruss TP; Neiss E; Sutherland CA Arch Int Pharmacodyn Ther; 1984 Nov; 272(1):40-55. PubMed ID: 6151380 [TBL] [Abstract][Full Text] [Related]
10. Modulation of in vitro erythropoiesis. Studies with euthyroid and hypothyroid dogs. Popovic WJ; Brown JE; Adamson JW J Clin Invest; 1979 Jul; 64(1):56-61. PubMed ID: 221548 [TBL] [Abstract][Full Text] [Related]
11. Thyroid hormone regulates ontogeny of beta adrenergic receptors and adenylate cyclase in rat heart and kidney: effects of propylthiouracil-induced perinatal hypothyroidism. Pracyk JB; Slotkin TA J Pharmacol Exp Ther; 1992 Jun; 261(3):951-8. PubMed ID: 1318378 [TBL] [Abstract][Full Text] [Related]
13. Thyroid hormone differentially regulates development of beta-adrenergic receptors, adenylate cyclase and ornithine decarboxylase in rat heart and kidney. Pracyk JB; Slotkin TA J Dev Physiol; 1991 Oct; 16(4):251-61. PubMed ID: 1667405 [TBL] [Abstract][Full Text] [Related]
14. beta-Adrenergic receptors and catecholamine sensitive adenylate cyclase in developing rat ventricular myocardium: effect of thyroid status. Whitsett JA; Pollinger J; Matz S Pediatr Res; 1982 Jun; 16(6):463-9. PubMed ID: 6285264 [TBL] [Abstract][Full Text] [Related]
15. Pharmacological identification of the alpha-adrenergic receptor type which inhibits the beta-adrenergic activated adenylate cyclase system in cultured astrocytes. Northam WJ; Bedoy CA; Mobley PL Glia; 1989; 2(2):129-33. PubMed ID: 2542160 [TBL] [Abstract][Full Text] [Related]
16. Modulation by thyroid status of cyclic AMP-dependent and Ca2+-dependent mechanisms of hormone action in rat liver cells. Possible involvement of two different transduction mechanisms in alpha 1-adrenergic action. Corvera S; Hernandez-Sotomayor SM; Garcia-Sainz JA Biochim Biophys Acta; 1984 Feb; 803(1-2):95-105. PubMed ID: 6320911 [TBL] [Abstract][Full Text] [Related]
17. Thyroid status and adrenergic receptor subtypes in the rat: comparison of receptor density and responsiveness. Fox AW; Juberg EN; May JM; Johnson RD; Abel PW; Minneman KP J Pharmacol Exp Ther; 1985 Dec; 235(3):715-23. PubMed ID: 3001274 [TBL] [Abstract][Full Text] [Related]
18. Thyroid hormone and norepinephrine signaling in brown adipose tissue. II: Differential effects of thyroid hormone on beta 3-adrenergic receptors in brown and white adipose tissue. Rubio A; Raasmaja A; Silva JE Endocrinology; 1995 Aug; 136(8):3277-84. PubMed ID: 7628361 [TBL] [Abstract][Full Text] [Related]
19. Alpha 1- and beta-adrenergic receptors in brown adipose tissue and the adrenergic regulation of thyroxine 5'-deiodinase. Raasmaja A Acta Physiol Scand Suppl; 1990; 590():1-61. PubMed ID: 2171299 [TBL] [Abstract][Full Text] [Related]
20. Physiological and molecular correlates of age-related changes in the human beta-adrenergic receptor system. Feldman RD Fed Proc; 1986 Jan; 45(1):48-50. PubMed ID: 3000834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]