These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 6317391)

  • 1. Conformational studies of 13 trinucleoside bisphosphates by 360-MHz 1H-NMR spectroscopy. 1. Ribose protons.
    Lee CH
    Eur J Biochem; 1983 Dec; 137(1-2):347-56. PubMed ID: 6317391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational studies of trinucleoside bisphosphates. 2. Potential energy calculations.
    Lee CH
    Eur J Biochem; 1983 Dec; 137(1-2):357-63. PubMed ID: 6549611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational properties of dinucleoside monophosphates in solution: dipurines and dipyrimidines.
    Lee CH; Ezra FS; Kondo NS; Sarma RH; Danyluk SS
    Biochemistry; 1976 Aug; 15(16):3627-39. PubMed ID: 952881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of adenylyl-3' leads to 5'-adenosine in aqueous solution.
    Kondo NS; Danyluk SS
    Biochemistry; 1976 Feb; 15(4):756-68. PubMed ID: 1247532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational properties of branched RNA fragments in aqueous solution.
    Damha MJ; Ogilvie KK
    Biochemistry; 1988 Aug; 27(17):6403-16. PubMed ID: 2464368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of (2'-5') and (3'-5') phosphodiester linkages on conformational and stacking properties of cytidylyl-cytidine in aqueous solution.
    Ezra FS; Kondo NS; Ainsworth CF; Danyluk SS
    Nucleic Acids Res; 1976 Oct; 3(10):2549-62. PubMed ID: 995643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 1H NMR assignments and conformational analysis of the oligoribonucleotides CA, CAU, CAUG, ACAUG, and UCAUG: observation of pyrimidine H5-H1' long-range scalar couplings.
    Orban J; Bell RA
    J Biomol Struct Dyn; 1990 Feb; 7(4):837-48. PubMed ID: 2310518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of nucleic acid backbone conformation by 1H NMR.
    Kim SG; Lin LJ; Reid BR
    Biochemistry; 1992 Apr; 31(14):3564-74. PubMed ID: 1373647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A nuclear magnetic resonance study of the ribotrinucleoside diphophate UpUpC.
    Gronenborn AM; Kimber BJ; Clore GM; McLaughlin LW
    Nucleic Acids Res; 1983 Aug; 11(16):5691-9. PubMed ID: 6412213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational flexibility of the 3' acceptor end of transfer ribonucleic acid.
    Cheng DM; Danyluk SS; Dhingra MM; Ezra FS; MacCoss M; Mitra CK; Sarma RH
    Biochemistry; 1980 May; 19(11):2491-7. PubMed ID: 7387986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational analysis of the trinucleoside diphosphate 3'd(A2'-5'A2'-5'A). An NMR and CD study.
    Doornbos J; Charubala R; Pfleiderer W; Altona C
    Nucleic Acids Res; 1983 Jul; 11(13):4569-82. PubMed ID: 6866773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformation studies of 13 trinucleoside diphosphates by 360 MHz PMR spectroscopy. A bulged base conformation. I. Base protons and H1' protons.
    Lee CH; Tinoco I
    Biophys Chem; 1980 Apr; 11(2):283-94. PubMed ID: 16997249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conformation of mononucleotides and dinucleoside monophosphates. P[H] and H[H] nuclear Overhauser effects.
    Hart PA
    Biophys J; 1978 Dec; 24(3):833-48. PubMed ID: 737288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies of the conformation of modified dinucleoside phosphates containing 1,N6-ethenoadenosine and 2'-O-methylcytidine by 360-MHz 1H nuclear magnetic resonance spectroscopy. Investigation of the solution conformations of dinucleoside phosphates.
    Lee CH; Tinoco I
    Biochemistry; 1977 Dec; 16(25):5403-14. PubMed ID: 921943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational analysis of a modified ribotetranucleoside triphosphate: m6(2)A-U-m6(2)A-U studied in aqueous solution by nuclear magnetic resonance at 500 MHz.
    Hartel AJ; Wille-Hazeleger G; van Boom JH; Altona C
    Nucleic Acids Res; 1981 Mar; 9(6):1405-23. PubMed ID: 6785726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparative conformational study of thymidylyl(3'----5')-thymidine, thymidylyl(3'----5')-5'-thio-5'- deoxythymidine and thymidinylacetamido-[3'(O)----5'(C)]-5'-deoxythymidine.
    Glemarec C; Nyilas A; Sund C; Chattopadhyaya J
    J Biochem Biophys Methods; 1990; 21(4):311-32. PubMed ID: 1965195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What is the conformation of physiologically-active dinucleoside polyphosphates in solution? Conformational analysis of free dinucleoside polyphosphates by NMR and molecular dynamics simulations.
    Stern N; Major DT; Gottlieb HE; Weizman D; Fischer B
    Org Biomol Chem; 2010 Oct; 8(20):4637-52. PubMed ID: 20714505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational studies of nucleic acids: IV. The conformational energetics of oligonucleotides: d(ApApApA) and ApApApA.
    Pearlman DA; Kim SH
    J Biomol Struct Dyn; 1986 Aug; 4(1):69-98. PubMed ID: 2482750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear overhauser studies of CCGGAp, ACCGGp, and ACCGGUp.
    Petersheim M; Turner DH
    Biochemistry; 1983 Jan; 22(2):264-8. PubMed ID: 6824630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advanced nuclear magnetic resonance lanthanide probe analyses of short-range conformational interrelations controlling ribonucleic acid structures.
    Yokoyama S; Inagaki F; Miyazawa T
    Biochemistry; 1981 May; 20(10):2981-8. PubMed ID: 6166319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.