These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 6317461)
1. Photogeneration of superoxide by adriamycin and daunomycin. An electron spin resonance and spin trapping study. Carmichael AJ; Mossoba MM; Riesz P FEBS Lett; 1983 Dec; 164(2):401-5. PubMed ID: 6317461 [TBL] [Abstract][Full Text] [Related]
2. Photoinduced reactions of anthraquinone antitumor agents with peptides and nucleic acid bases: an electron spin resonance and spin trapping study. Carmichael AJ; Riesz P Arch Biochem Biophys; 1985 Mar; 237(2):433-44. PubMed ID: 2983614 [TBL] [Abstract][Full Text] [Related]
3. Detection of free radicals during the cellular metabolism of adriamycin. Turner MJ; Everman DB; Ellington SP; Fields CE Free Radic Biol Med; 1990; 9(5):415-21. PubMed ID: 1963415 [TBL] [Abstract][Full Text] [Related]
4. Free radicals induced by adriamycin-sensitive and adriamycin-resistant cells: a spin-trapping study. Alegria AE; Samuni A; Mitchell JB; Riesz P; Russo A Biochemistry; 1989 Oct; 28(21):8653-8. PubMed ID: 2557905 [TBL] [Abstract][Full Text] [Related]
5. Effect of superoxide dismutase mimics on radical adduct formation during the reaction between peroxynitrite and thiols--an ESR-spin trapping study. Karoui H; Hogg N; Joseph J; Kalyanaraman B Arch Biochem Biophys; 1996 Jun; 330(1):115-24. PubMed ID: 8651684 [TBL] [Abstract][Full Text] [Related]
6. Free radical production from normal and adriamycin-treated rat cardiac sarcosomes. Thornalley PJ; Dodd NJ Biochem Pharmacol; 1985 Mar; 34(5):669-74. PubMed ID: 2983734 [TBL] [Abstract][Full Text] [Related]
7. Spin-trapping and direct electron spin resonance investigations of the redox metabolism of quinone anticancer drugs. Kalyanaraman B; Perez-Reyes E; Mason RP Biochim Biophys Acta; 1980 Jun; 630(1):119-30. PubMed ID: 6248123 [TBL] [Abstract][Full Text] [Related]
8. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical. Britigan BE; Roeder TL; Buettner GR Biochim Biophys Acta; 1991 Oct; 1075(3):213-22. PubMed ID: 1659450 [TBL] [Abstract][Full Text] [Related]
9. Spin trap studies on the decomposition of peroxynitrite. Lemercier JN; Squadrito GL; Pryor WA Arch Biochem Biophys; 1995 Aug; 321(1):31-9. PubMed ID: 7639532 [TBL] [Abstract][Full Text] [Related]
10. Superoxide dismutase-like activities of copper(II) complexes tested in serum. Huber KR; Sridhar R; Griffith EH; Amma EL; Roberts J Biochim Biophys Acta; 1987 Sep; 915(2):267-76. PubMed ID: 2820500 [TBL] [Abstract][Full Text] [Related]
11. Photochemistry of aqueous adriamycin and daunomycin. A spin trapping study with 17O enriched oxygen and water. Alegria AE; Riesz P Photochem Photobiol; 1988 Aug; 48(2):147-52. PubMed ID: 2851841 [No Abstract] [Full Text] [Related]
12. Superoxide photogeneration by chlorophyll a in water/acetone. Electron spin resonance studies of radical intermediates in chlorophyll a photoreaction in vitro. You JL; Fong FK Biochem Biophys Res Commun; 1986 Sep; 139(3):1124-9. PubMed ID: 3021148 [TBL] [Abstract][Full Text] [Related]
13. Photochemistry of aqueous solutions of benzazolo[3,2-a]quinolinium salts. A spin-trapping study using 17O-enriched water and oxygen. Alegria AE; Cox O; Dumas JA; Rivera LA; Riesz P Biochim Biophys Acta; 1988 Oct; 967(1):1-10. PubMed ID: 2844279 [TBL] [Abstract][Full Text] [Related]
14. Spectroscopic studies of cutaneous photosensitizing agents--X. A spin-trapping and direct electron spin resonance study of the photochemical pathways of daunomycin and adriamycin. Li AS; Chignell CF Photochem Photobiol; 1987 May; 45(5):565-70. PubMed ID: 3037574 [No Abstract] [Full Text] [Related]
15. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts. Finkelstein E; Rosen GM; Rauckman EJ Mol Pharmacol; 1982 Mar; 21(2):262-5. PubMed ID: 6285165 [TBL] [Abstract][Full Text] [Related]
16. Glutathione-mediated formation of oxygen free radicals by the major metabolite of oltipraz. Velayutham M; Villamena FA; Navamal M; Fishbein JC; Zweier JL Chem Res Toxicol; 2005 Jun; 18(6):970-5. PubMed ID: 15962931 [TBL] [Abstract][Full Text] [Related]
17. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates. Augusto O; Gatti RM; Radi R Arch Biochem Biophys; 1994 Apr; 310(1):118-25. PubMed ID: 8161194 [TBL] [Abstract][Full Text] [Related]
18. Identification of free radicals in myocardial ischemia/reperfusion by spin trapping with nitrone DMPO. Arroyo CM; Kramer JH; Dickens BF; Weglicki WB FEBS Lett; 1987 Aug; 221(1):101-4. PubMed ID: 3040465 [TBL] [Abstract][Full Text] [Related]
19. Separation and identification of DMPO adducts of oxygen-centered radicals formed from organic hydroperoxides by HPLC-ESR, ESI-MS and MS/MS. Guo Q; Qian SY; Mason RP J Am Soc Mass Spectrom; 2003 Aug; 14(8):862-71. PubMed ID: 12892910 [TBL] [Abstract][Full Text] [Related]
20. Inhibition by singlet molecular oxygen of the vascular reactivity in rabbit mesenteric artery. Mizukawa H; Okabe E Br J Pharmacol; 1997 May; 121(1):63-70. PubMed ID: 9146888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]