These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 6318156)

  • 1. Plasticity of the receptive field of a molluscan polyfunctional neuron.
    Arakelov GG; Shekhter ED; Sokolov EN
    Neurosci Behav Physiol; 1983; 13(4):302-6. PubMed ID: 6318156
    [No Abstract]   [Full Text] [Related]  

  • 2. [Receptive field plasticity of a polyfunctional neuron in mollusks].
    Arakelov GG; Shekhter ED; Sokolov EN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(3):540-5. PubMed ID: 6287755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Changes in the excitability of command neurons during the initial period of conditioned reflex formation in grape snails].
    Litvinov EG; Logunov DB
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1979; 29(2):284-94. PubMed ID: 452718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [The effect of the transmembrane potential level on the dynamic extinction of the amplitude of the synaptic reactions in the snail under potential-fixation conditions].
    Gusev PV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1995; 45(1):171-9. PubMed ID: 7754688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective form of an excitable membrane plasticity.
    Tsitolovsky LE; Babkina NV
    Brain Res; 1992 Nov; 595(1):67-73. PubMed ID: 1467960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation by Ca ions of short-term plasticity of the cholinoreceptive membrane in molluscan neurons.
    Pivovarov AS; Saganelidze GN
    Neurosci Behav Physiol; 1987; 17(4):288-96. PubMed ID: 2446194
    [No Abstract]   [Full Text] [Related]  

  • 7. [Giant polyfunctional neuron of the edible snail].
    Arakelov GG; Shekhter ED
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1981; 31(1):96-105. PubMed ID: 6264713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Principle of neuronal organization of defensive reflexes in mollusks].
    Logunov DB; Konnov MI
    Neirofiziologiia; 1984; 16(1):26-34. PubMed ID: 6325959
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The active electrogenesis of the command neurons in the defensive behavior of the mollusk during conditioning].
    Babkina NV; Tsitolovskiĭ LE
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1991; 41(4):781-7. PubMed ID: 1660658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Serotonergic system of neurons in the CNS of terrestrial snail: morphology, ontogenesis, control of behavior].
    Ierusalimskiĭ VN; Balaban PM
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(5):515-24. PubMed ID: 21260975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Modeling the "conditioned" response of command neurons on the isolated CNS of grape snails].
    Tret'iakov VP; Deriĭ BN
    Dokl Akad Nauk SSSR; 1979; 246(3):750-2. PubMed ID: 467226
    [No Abstract]   [Full Text] [Related]  

  • 12. [Central representation and integration of sensory inputs from the cardiorenal system of the grape snail].
    Rózsa KS
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1977; 27(6):1224-33. PubMed ID: 202106
    [No Abstract]   [Full Text] [Related]  

  • 13. Phase-dependent synaptic changes in the hippocampal CA1 field underlying extinction processes in freely moving rats.
    Saito Y; Matsumoto M; Otani S; Yanagawa Y; Hiraide S; Ishikawa S; Kimura S; Shimamura K; Togashi H
    Neurobiol Learn Mem; 2012 May; 97(4):361-9. PubMed ID: 22415041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synapses identifiable in the parietal ganglia of the snail Helix lucorum].
    Palikhova TA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2000; 50(5):775-90. PubMed ID: 11084995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alteration of synaptic transmission in the hippocampal-mPFC pathway during extinction trials of context-dependent fear memory in juvenile rat stress models.
    Koseki H; Matsumoto M; Togashi H; Miura Y; Fukushima K; Yoshioka M
    Synapse; 2009 Sep; 63(9):805-13. PubMed ID: 19504621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Error correction and fast detectors implemented by ultrafast neuronal plasticity.
    Vardi R; Marmari H; Kanter I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):042712. PubMed ID: 24827283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Effect of selective protein kinase C inhibitor on synaptic plasticity of command neurons of defensive behaviour during sensitization in snails].
    Nikitin VP; Kozyrev SA
    Ross Fiziol Zh Im I M Sechenova; 2002 Nov; 88(11):1401-11. PubMed ID: 12587268
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling the Mechanisms of Memory Extinction.
    Han SL; Xu TL
    Neurosci Bull; 2018 Apr; 34(2):385-388. PubMed ID: 29243026
    [No Abstract]   [Full Text] [Related]  

  • 19. [The role of cyclic 3',5'-adenosine monophosphate in the extinction of the reaction of identified neurons in the edible snail to acetylcholine].
    Pivovarov AS; Drozdova EI; Kotliar BI
    Nauchnye Doki Vyss Shkoly Biol Nauki; 1988; (11):54-61. PubMed ID: 2852034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synapse-specific plasticity in command neurons during learning of edible snails under the action of caspase inhibitors.
    Kozyrev SA; Nikitin VP; Sherstnev VV
    Bull Exp Biol Med; 2007 Dec; 144(6):755-9. PubMed ID: 18856194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.