These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
92 related articles for article (PubMed ID: 6318507)
41. [The oxidative stress in the cataract formation]. Obara Y Nippon Ganka Gakkai Zasshi; 1995 Dec; 99(12):1303-41. PubMed ID: 8571853 [TBL] [Abstract][Full Text] [Related]
42. Radioprotective efficacy of Ginkgo biloba and Angelica archangelica extract against technetium-99m-sestamibi induced oxidative stress and lens injury in rats. Khedr MH; Shafaa MW; Abdel-Ghaffar A; Saleh A Int J Radiat Biol; 2018 Jan; 94(1):37-44. PubMed ID: 29157082 [TBL] [Abstract][Full Text] [Related]
43. Propyl gallate is a superoxide dismutase mimic and protects cultured lens epithelial cells from H2O2 insult. Reddan JR; Giblin FJ; Sevilla M; Padgaonkar V; Dziedzic DC; Leverenz VR; Misra IC; Chang JS; Pena JT Exp Eye Res; 2003 Jan; 76(1):49-59. PubMed ID: 12589775 [TBL] [Abstract][Full Text] [Related]
44. Chlorophyllin as a protector of mitochondrial membranes against gamma-radiation and photosensitization. Boloor KK; Kamat JP; Devasagayam TP Toxicology; 2000 Nov; 155(1-3):63-71. PubMed ID: 11154798 [TBL] [Abstract][Full Text] [Related]
45. Anti-cataractogenic effect of curcumin and aminoguanidine against selenium-induced oxidative stress in the eye lens of Wistar rat pups: An in vitro study using isolated lens. Manikandan R; Thiagarajan R; Beulaja S; Chindhu S; Mariammal K; Sudhandiran G; Arumugam M Chem Biol Interact; 2009 Oct; 181(2):202-9. PubMed ID: 19481068 [TBL] [Abstract][Full Text] [Related]
46. UV light increases vitamin C uptake by bovine lens epithelial cells. Corti A; Ferrari SM; Lazzarotti A; Del Corso A; Mura U; Casini AF; Paolicchi A Mol Vis; 2004 Aug; 10():533-6. PubMed ID: 15316465 [TBL] [Abstract][Full Text] [Related]
47. Mitochondria induce oxidative stress, generation of reactive oxygen species and redox state unbalance of the eye lens leading to human cataract formation: disruption of redox lens organization by phospholipid hydroperoxides as a common basis for cataract disease. Babizhayev MA Cell Biochem Funct; 2011 Apr; 29(3):183-206. PubMed ID: 21381059 [TBL] [Abstract][Full Text] [Related]
48. Superoxide dismutase of the eye: relative functions of superoxide dismutase and catalase in protecting the ocular lens from oxidative damage. Bhuyan KC; Bhuyan DK Biochim Biophys Acta; 1978 Aug; 542(1):28-38. PubMed ID: 208649 [TBL] [Abstract][Full Text] [Related]
49. High galactose levels in vitro and in vivo impair ascorbate regeneration and increase ascorbate-mediated glycation in cultured rat lens. Saxena P; Saxena AK; Monnier VM Exp Eye Res; 1996 Nov; 63(5):535-45. PubMed ID: 8994357 [TBL] [Abstract][Full Text] [Related]
50. The effects of X-irradiation on lens reducing systems. Giblin FJ; Chakrapani B; Reddy VN Invest Ophthalmol Vis Sci; 1979 May; 18(5):468-75. PubMed ID: 35484 [TBL] [Abstract][Full Text] [Related]
51. The effect of N-acetyl serotonin on ultraviolet-radiation-induced cataracts in rats. Yildirim N; Ozer A; Inal M; Angin K; Yurdakul S Ophthalmologica; 2003; 217(2):148-53. PubMed ID: 12592055 [TBL] [Abstract][Full Text] [Related]
52. [A study of lipid peroxide-induced damage and of ultrastructure of lens epithelial cells in lens organ culture in vitro]. Kang J; Zhang J; Zhao Y Zhonghua Yan Ke Za Zhi; 1998 May; 34(3):221-3, 15. PubMed ID: 11877196 [TBL] [Abstract][Full Text] [Related]
53. Drevogenin D prevents selenite-induced oxidative stress and calpain activation in cultured rat lens. Biju PG; Rooban BN; Lija Y; Devi VG; Sahasranamam V; Abraham A Mol Vis; 2007 Jul; 13():1121-9. PubMed ID: 17653057 [TBL] [Abstract][Full Text] [Related]
54. Effect of H(2)O(2)on human lens epithelial cells and the possible mechanism for oxidative damage repair by thioltransferase. Xing KY; Lou MF Exp Eye Res; 2002 Jan; 74(1):113-22. PubMed ID: 11878824 [TBL] [Abstract][Full Text] [Related]
55. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products. Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665 [TBL] [Abstract][Full Text] [Related]
56. GLUTATHIONE PEROXIDASE IN LENS AND A SOURCE OF HYDROGEN PEROXIDE IN AQUEOUS HUMOUR. PIRIE A Biochem J; 1965 Jul; 96(1):244-53. PubMed ID: 14343138 [TBL] [Abstract][Full Text] [Related]
57. Superoxide dismutase isoenzymes in the human eye. Behndig A; Svensson B; Marklund SL; Karlsson K Invest Ophthalmol Vis Sci; 1998 Mar; 39(3):471-5. PubMed ID: 9501855 [TBL] [Abstract][Full Text] [Related]
58. Use of the Comet assay to investigate the role of superoxide in glutathione-induced DNA damage. Thomas S; Lowe JE; Hadjivassiliou V; Knowles RG; Green IC; Green MH Biochem Biophys Res Commun; 1998 Feb; 243(1):241-5. PubMed ID: 9473511 [TBL] [Abstract][Full Text] [Related]
59. Role of superoxide dismutase enzymes and ascorbate in protection of nitrergic relaxation against superoxide anions in mouse duodenum. Secilmis MA; Kiroğlu OE; Ogulener N Acta Pharmacol Sin; 2008 Jun; 29(6):687-97. PubMed ID: 18501115 [TBL] [Abstract][Full Text] [Related]
60. Lycopene as a natural protector against gamma-radiation induced DNA damage, lipid peroxidation and antioxidant status in primary culture of isolated rat hepatocytes in vitro. Srinivasan M; Sudheer AR; Pillai KR; Kumar PR; Sudhakaran PR; Menon VP Biochim Biophys Acta; 2007 Apr; 1770(4):659-65. PubMed ID: 17189673 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]