These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 6318739)

  • 1. Lack of vasopressin receptors in liver, but not in kidney, of ob/ob mice.
    Assimacopoulos-Jeannet F; Cantau B; van de Werve G; Jard S; Jeanrenaud B
    Biochem J; 1983 Nov; 216(2):475-80. PubMed ID: 6318739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction in hepatic but not in renal and vascular vasopressin receptor number in hyperinsulinemic mice and rats.
    Cantau B; Guillon G; Mathieu MN; Vidal-Chicot D; Chevillard C
    Mol Cell Endocrinol; 1984 Dec; 38(2-3):131-9. PubMed ID: 6096184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered liver glycogen metabolism in fed genetically obese mice.
    van de Werve G; Assimacopoulos-Jeannet F; Jeanrenaud B
    Biochem J; 1983 Nov; 216(2):273-80. PubMed ID: 6318732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic and pharmacological characterization of vasopressin membrane receptors from human kidney medulla: relation to adenylate cyclase activation.
    Guillon G; Butlen D; Cantau B; Barth T; Jard S
    Eur J Pharmacol; 1982 Dec; 85(3-4):291-304. PubMed ID: 6295785
    [No Abstract]   [Full Text] [Related]  

  • 5. Resistance to hepatic action of vasopressin in genetically obese (ob/ob) mice.
    Hems DA; Ma GY
    Biochem J; 1976 Oct; 160(1):23-8. PubMed ID: 1008843
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of vasopressin agonists and antagonists with membrane receptors.
    Fahrenholz F; Boer R; Crause P; Fritzsch G; Grzonka Z
    Eur J Pharmacol; 1984 Apr; 100(1):47-58. PubMed ID: 6327326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Leu]enkephalin stimulates carbohydrate metabolism in isolated hepatocytes and kidney tubule fragments by interaction with angiotensin II receptors.
    Hothi SK; Randall DP; Titheradge MA
    Biochem J; 1989 Feb; 257(3):705-10. PubMed ID: 2930480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size of vasopressin receptors from rat liver and kidney.
    Guillon G; Couraud PO; Butlen D; Cantau B; Jard S
    Eur J Biochem; 1980 Oct; 111(1):287-94. PubMed ID: 6254775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determination of the functional molecular size of vasopressin isoreceptors.
    Crause P; Boer R; Fahrenholz F
    FEBS Lett; 1984 Oct; 175(2):383-6. PubMed ID: 6090217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The relationships between receptor binding capacity for norepinephrine, angiotensin II, and vasopressin and release of inositol trisphosphate, Ca2+ mobilization, and phosphorylase activation in rat liver.
    Lynch CJ; Blackmore PF; Charest R; Exton JH
    Mol Pharmacol; 1985 Aug; 28(2):93-9. PubMed ID: 2991741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impairment of effects of vasopressin on [1-14C]oleate metabolism in hepatocytes from obese (ob/ob) mice.
    Edwards MW; Cawthorne MA; Williamson DH
    Biochem J; 1981 Jul; 198(1):239-42. PubMed ID: 7326000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the human liver vasopressin receptor. Profound differences between human and rat vasopressin-receptor-mediated responses suggest only a minor role for vasopressin in regulating human hepatic function.
    Howl J; Ismail T; Strain AJ; Kirk CJ; Anderson D; Wheatley M
    Biochem J; 1991 May; 276 ( Pt 1)(Pt 1):189-95. PubMed ID: 2039469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defective HDL particle uptake in ob/ob hepatocytes causes decreased recycling, degradation, and selective lipid uptake.
    Silver DL; Wang N; Tall AR
    J Clin Invest; 2000 Jan; 105(2):151-9. PubMed ID: 10642593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. (3H)-vasopressin binding to isolated rat hepatocytes and liver membranes: regulation by GTP and relation to glycogen phosphorylase activation.
    Cantau B; Keppens S; De Wulf H; Jard S
    J Recept Res; 1980; 1(2):137-68. PubMed ID: 6271952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of effects of vasopressin, angiotensin II, and glucagon on Ca2+ fluxes and phosphorylase activity in liver.
    Blackmore PF; Exton JH
    Methods Enzymol; 1985; 109():550-8. PubMed ID: 3990571
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of islet-activating pertussis toxin on the binding characteristics of Ca2+-mobilizing hormones and on agonist activation of phosphorylase in hepatocytes.
    Lynch CJ; Prpic V; Blackmore PF; Exton JH
    Mol Pharmacol; 1986 Feb; 29(2):196-203. PubMed ID: 3005828
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hormonal control of pyruvate dehydrogenase activity in rat liver.
    Oviasu OA; Whitton PD
    Biochem J; 1984 Nov; 224(1):181-6. PubMed ID: 6391471
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin receptors in the heart muscle. Demonstration of specific binding sites and impairment of insulin binding in the plasma membrane of the obese hyperglycemic mouse.
    Forgue ME; Freychet P
    Diabetes; 1975 Aug; 24(8):715-23. PubMed ID: 169173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin receptor deficiency in genetic and acquired obesity.
    Soli AH; Kahn CR; Neville DM; Roth J
    J Clin Invest; 1975 Oct; 56(4):769-80. PubMed ID: 169296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular mechanisms of novel antidiuretic antagonists: analysis of the effects on vasopressin binding and adenylate cyclase activation in animal and human kidney.
    Stassen FL; Erickson RW; Huffman WF; Stefankiewicz J; Sulat L; Wiebelhaus VD
    J Pharmacol Exp Ther; 1982 Oct; 223(1):50-4. PubMed ID: 7120127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.