These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 6318757)

  • 1. Angiotensin II receptors negatively coupled to adenylate cyclase in rat aorta.
    Anand-Srivastava MB
    Biochem Biophys Res Commun; 1983 Dec; 117(2):420-8. PubMed ID: 6318757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The hepatic angiotensin II receptor. II. Effect of guanine nucleotides and interaction with cyclic AMP production.
    Crane JK; Campanile CP; Garrison JC
    J Biol Chem; 1982 May; 257(9):4959-65. PubMed ID: 6279654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of guanine nucleotides and divalent cations on forskolin activation of rabbit luteal adenylyl cyclase: evidence for the existence of an inhibitory guanine nucleotide-binding regulatory component.
    Abramowitz J; Campbell AR
    Endocrinology; 1984 Jun; 114(6):1955-62. PubMed ID: 6327229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pharmacological characterization of the angiotensin receptor negatively coupled with adenylate cyclase in rat anterior pituitary gland.
    Marie J; Gaillard RC; Schoenenberg P; Jard S; Bockaert J
    Endocrinology; 1985 Mar; 116(3):1044-50. PubMed ID: 2982569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin II receptors negatively coupled to adenylate cyclase in rat myocardial sarcolemma. Involvement of inhibitory guanine nucleotide regulatory protein.
    Anand-Srivastava MB
    Biochem Pharmacol; 1989 Feb; 38(3):489-96. PubMed ID: 2492805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanosine 5'-triphosphate and guanosine 5'-[beta gamma-imido]triphosphate effect a collision coupling mechanism between the glucagon receptor and catalytic unit of adenylate cyclase.
    Houslay MD; Dipple I; Elliott KR
    Biochem J; 1980 Mar; 186(3):649-58. PubMed ID: 6249258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition of adenylate cyclase in rat adrenal glomerulosa cells by angiotensin II.
    Woodcock EA; Johnston CI
    Endocrinology; 1984 Jul; 115(1):337-41. PubMed ID: 6329657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient complexes. A new structural model for the activation of adenylate cyclase by hormone receptors (guanine nucleotides/irradiation inactivation).
    Martin BR; Stein JM; Kennedy EL; Doberska CA; Metcalfe JC
    Biochem J; 1979 Nov; 184(2):253-60. PubMed ID: 230831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of cations and guanyl nucleotides on agonist and antagonist binding to rat adrenal and uterine angiotensin II receptors.
    Capponi AM; Van KH; Vallotton MB
    Eur J Pharmacol; 1985 Aug; 114(3):325-33. PubMed ID: 2998811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibitory effects of sodium and other monovalent cations on human platelet adenylate cyclase.
    Steer ML; Wood A
    J Biol Chem; 1981 Oct; 256(19):9990-3. PubMed ID: 7196915
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catecholamine and guanine nucleotide activation of skeletal muscle adenylate cyclase.
    Nambi P; Drummond GI
    Biochim Biophys Acta; 1979 Mar; 583(3):287-94. PubMed ID: 36171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of thyroid adenylate cyclase: guanyl nucleotide modulation of thyrotropin receptor-adenylate cyclase function.
    Saltiel AR; Powell-Jones CH; Thomas CG; Nayfeh SN
    Endocrinology; 1981 Nov; 109(5):1578-89. PubMed ID: 6271536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition and activation of fat cell adenylate cyclase by GTP is mediated by structures of different size.
    Schlegel W; Cooper DM; Rodbell M
    Arch Biochem Biophys; 1980 May; 201(2):678-82. PubMed ID: 6249213
    [No Abstract]   [Full Text] [Related]  

  • 14. Inhibition of adenylate cyclase by angiotensin II in rat renal cortex.
    Woodcock EA; Johnston CI
    Endocrinology; 1982 Nov; 111(5):1687-91. PubMed ID: 7128530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of the glucagon receptor to adenylyl cyclase by GDP: evidence for two levels of regulation of adenylyl cyclase.
    Iyengar R; Birnbaumer L
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3189-93. PubMed ID: 226958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of cholinergic inhibition and beta-adrenergic stimulation of adenylate cyclase from rat and guinea-pig hearts: effects of guanine nucleotides and monovalent cations.
    Sulakhe PV; Phan NT; Jagadeesh G
    Gen Pharmacol; 1985; 16(4):311-20. PubMed ID: 2995191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The monovalent anions chloride and azide as potent activators of NaF- and p(NH)ppG-stimulation of pancreatic adenylate cyclase.
    Svoboda M; Christophe J
    FEBS Lett; 1978 Feb; 86(2):230-4. PubMed ID: 624406
    [No Abstract]   [Full Text] [Related]  

  • 18. Role of guanine nucleotides in the stimulation of thyroid adenylate cyclase by prostaglandin E1 and cholera toxin.
    Friedman Y; Lang M; Burke G
    Biochim Biophys Acta; 1981 Feb; 673(1):114-23. PubMed ID: 7470506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal growth factor stimulates rat cardiac adenylate cyclase through a GTP-binding regulatory protein.
    Nair BG; Rashed HM; Patel TB
    Biochem J; 1989 Dec; 264(2):563-71. PubMed ID: 2513810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lutropin induced desensitization of rat ovarian adenylate cyclase: a GTP-dependent process.
    Ezra E; Lindner HR; Salomon Y
    Adv Exp Med Biol; 1979; 112():711-5. PubMed ID: 223408
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.