These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 6318827)

  • 61. Interaction of hemin with erythrocyte membranes: alterations in the physical state of the major sialoglycoprotein.
    Wyse JW; Butterfield DA
    Biochim Biophys Acta; 1989 Feb; 979(1):121-6. PubMed ID: 2537104
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Involvement of erythrocyte skeletal proteins in the modulation of membrane fluidity by phenothiazines.
    Minetti M; Di Stasi AM
    Biochemistry; 1987 Dec; 26(25):8133-7. PubMed ID: 2831937
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structure and thermotropic phase behaviour of detergent-resistant membrane raft fractions isolated from human and ruminant erythrocytes.
    Quinn PJ; Tessier C; Rainteau D; Koumanov KS; Wolf C
    Biochim Biophys Acta; 2005 Jul; 1713(1):5-14. PubMed ID: 15963456
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Actin--membrane interactions: association of G-actin with the red cell membrane.
    Cohen CM; Jackson PL; Branton D
    J Supramol Struct; 1978; 9(1):113-24. PubMed ID: 732309
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Junctional sites of erythrocyte skeletal proteins are specific targets of tert-butylhydroperoxide oxidative damage.
    Caprari P; Bozzi A; Malorni W; Bottini A; Iosi F; Santini MT; Salvati AM
    Chem Biol Interact; 1995 Mar; 94(3):243-58. PubMed ID: 7820887
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A study on the reaction of human erythrocytes with hydrogen peroxide.
    Yamaguchi T; Fujita Y; Kuroki S; Ohtsuka K; Kimoto E
    J Biochem; 1983 Aug; 94(2):379-86. PubMed ID: 6313634
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Spontaneous, reversible protein cross-linking in the human erythrocyte membrane. Temperature and pH dependence.
    Liu SC; Fairbanks G; Palek J
    Biochemistry; 1977 Sep; 16(18):4066-74. PubMed ID: 20929
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Irreversible deformation of the spectrin-actin lattice in irreversibly sickled cells.
    Lux SE; John KM; Karnovsky MJ
    J Clin Invest; 1976 Oct; 58(4):955-63. PubMed ID: 965498
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Structural and motional changes in glyceraldehyde-3-phosphate dehydrogenase upon binding to the band-3 protein of the erythrocyte membrane examined with [15N,2H]maleimide spin label and electron paramagnetic resonance.
    Beth AH; Balasubramanian K; Wilder RT; Venkataramu SD; Robinson BH; Dalton LR; Pearson DE; Park JH
    Proc Natl Acad Sci U S A; 1981 Aug; 78(8):4955-9. PubMed ID: 6272285
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Effects of diethyl ether on membrane lipid ordering and on rotational dynamics of the anion exchange protein in intact human erythrocytes: correlations with anion exchange function.
    Cobb CE; Juliao S; Balasubramanian K; Staros JV; Beth AH
    Biochemistry; 1990 Dec; 29(48):10799-806. PubMed ID: 2176884
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Binding of vanadate to human erythrocyte ghosts and subsequent events.
    Zhang B; Ruan L; Chen B; Lu J; Wang K
    Biometals; 1997 Oct; 10(4):291-8. PubMed ID: 9353877
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The effect of nonadec(en)ylresorcinol on the fluidity of liposome and erythrocyte membranes.
    Kozubek A; Jezierski A; Sikorski AF
    Biochim Biophys Acta; 1988 Oct; 944(3):465-72. PubMed ID: 3179300
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Ultrastructure of the intact skeleton of the human erythrocyte membrane.
    Shen BW; Josephs R; Steck TL
    J Cell Biol; 1986 Mar; 102(3):997-1006. PubMed ID: 2936753
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Red cell membranes of ankyrin-deficient nb/nb mice lack band 3 tetramers but contain normal membrane skeletons.
    Yi SJ; Liu SC; Derick LH; Murray J; Barker JE; Cho MR; Palek J; Golan DE
    Biochemistry; 1997 Aug; 36(31):9596-604. PubMed ID: 9236006
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Triton shells of intact erythrocytes.
    Sheetz MP; Sawyer D
    J Supramol Struct; 1978; 8(4):399-412. PubMed ID: 723274
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Lipid-protein interactions in reconstituted membranes containing acetylcholine receptor.
    Ellena JF; Blazing MA; McNamee MG
    Biochemistry; 1983 Nov; 22(24):5523-35. PubMed ID: 6317021
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Variations of lipid-protein interactions in erythrocyte ghosts as a function of temperature and pH in physiological and non-physiological ranges. A study using a paramagnetic quenching of protein fluorescence by nitroxide lipid analogues.
    Bieri VG; Wallach DF
    Biochim Biophys Acta; 1975 Oct; 406(3):415-23. PubMed ID: 241415
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Aging of the erythrocyte. IV. Spin-label studies of membrane lipids, proteins and permeability.
    Bartosz G
    Biochim Biophys Acta; 1981 Jun; 644(1):69-73. PubMed ID: 6266465
    [TBL] [Abstract][Full Text] [Related]  

  • 79. [Temperature transitions of spectrin in solution and in erythrocyte membranes].
    Kozlova NM; Slobozhanina EI; Vorobeĭ AV; Chernitskiĭ EA
    Biofizika; 1979; 24(6):1111-3. PubMed ID: 508833
    [TBL] [Abstract][Full Text] [Related]  

  • 80. ESR spin-label studies of lipid-protein interactions in membranes.
    Marsh D; Watts A; Pates RD; Uhl R; Knowles PF; Esmann M
    Biophys J; 1982 Jan; 37(1):265-74. PubMed ID: 6275924
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.