BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 6318905)

  • 1. Elevated tonicity increases miniature end-plate potential frequency during tetanic stimulation at frog neuromuscular junction in low calcium and in manganese saline solutions.
    Narita K; Kita H; van der Kloot W
    Brain Res; 1983 Dec; 289(1-2):79-85. PubMed ID: 6318905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tetanic stimulation increases the frequency of miniature end-plate potentials at the frog neuromuscular junction in Mn2+-, CO2+-, and Ni2+-saline solutions.
    Kita H; Narita K; Van der Kloot W
    Brain Res; 1981 Jan; 205(1):111-21. PubMed ID: 6258705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Tetanic potentiation of miniature end-plate potential frequency at frog neuromuscular junction in manganese solutions].
    Narita K
    Nihon Seirigaku Zasshi; 1985; 47(12):746-55. PubMed ID: 3007749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of temperature on the decline in miniature end-plate potential frequency following a tetanus.
    Kita H; Narita K; van der Kloot W
    Brain Res; 1980 May; 190(2):435-45. PubMed ID: 7370799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relation between tonicity and impulse-evoked transmitter release in the frog.
    Kita H; Narita K; Van der Kloot W
    J Physiol; 1982 Apr; 325():213-22. PubMed ID: 6286938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in miniature endplate potential frequency during repetitive nerve stimulation in the presence of Ca2+, Ba2+, and Sr2+ at the frog neuromuscular junction.
    Zengel JE; Magleby KL
    J Gen Physiol; 1981 May; 77(5):503-29. PubMed ID: 6262429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time course and magnitude of effects of changes in tonicity on acetylcholine release at frog neuromuscular junction.
    Kita H; van der Kloot W
    J Neurophysiol; 1977 Mar; 40(2):212-24. PubMed ID: 300428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous and evoked transmitter releases after concanavalin A treatment are affected differently by hypertonic low calcium solutions at frog neuromuscular junction.
    Narita K; Kawasaki F; Kita H
    Brain Res; 1990 Mar; 512(1):33-9. PubMed ID: 2337806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic basis of tetanic and post-tetanic potentiation at a mammalian neuromuscular junction.
    Nussinovitch I; Rahamimoff R
    J Physiol; 1988 Feb; 396():435-55. PubMed ID: 2457692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological differences between strong and weak frog neuromuscular junctions: a study involving tetanic and posttetanic potentiation.
    Pawson PA; Grinnell AD
    J Neurosci; 1990 Jun; 10(6):1769-78. PubMed ID: 2113085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The calcium dependence of spontaneous and evoked quantal release at the frog neuromuscular junction.
    Barton SB; Cohen IS; van der Kloot W
    J Physiol; 1983 Apr; 337():735-51. PubMed ID: 6603514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mn and Mg influxes through Ca channels of motor nerve terminals are prevented by verapamil in frogs.
    Narita K; Kawasaki F; Kita H
    Brain Res; 1990 Mar; 510(2):289-95. PubMed ID: 2158851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A study of tetanic and post-tetanic potentiation of miniature end-plate potentials at the frog neuromuscular junction.
    Lev-Tov A; Rahamimoff R
    J Physiol; 1980 Dec; 309():247-73. PubMed ID: 6973021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Presynaptic action of trifluoperazine at the frog neuromuscular junction.
    Publicover SJ
    Naunyn Schmiedebergs Arch Pharmacol; 1983 Feb; 322(1):83-8. PubMed ID: 6133223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in MEPP frequency during depression of evoked release at the frog neuromuscular junction.
    Zengel JE; Sosa MA
    J Physiol; 1994 Jun; 477(Pt 2):267-77. PubMed ID: 7932218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium dependence of evoked transmitter release at very low quantal contents at the frog neuromuscular junction.
    Andreu R; Barrett EF
    J Physiol; 1980 Nov; 308():79-97. PubMed ID: 6112267
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of action of lead on neuromuscular junctions.
    Atchison WD; Narahashi T
    Neurotoxicology; 1984; 5(3):267-82. PubMed ID: 6097847
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alteration of nerve terminal Ca2+ regulation on increased spontaneous quantal release of acetylcholine by methyl mercury.
    Levesque PC; Atchison WD
    Toxicol Appl Pharmacol; 1988 Jun; 94(1):55-65. PubMed ID: 3376114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.