These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 6319187)

  • 1. Use of the pH sensitive fluorescence probe pyranine to monitor internal pH changes in Escherichia coli membrane vesicles.
    Damiano E; Bassilana M; Rigaud JL; Leblanc G
    FEBS Lett; 1984 Jan; 166(1):120-4. PubMed ID: 6319187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles.
    Clement NR; Gould JM
    Biochemistry; 1981 Mar; 20(6):1534-8. PubMed ID: 6261798
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring of the proton electrochemical gradient in reconstituted vesicles: quantitative measurements of both transmembrane potential and intravesicular pH by ratiometric fluorescent probes.
    Holoubek A; Vecer J; Sigler K
    J Fluoresc; 2007 Mar; 17(2):201-13. PubMed ID: 17279336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. pH probes respond to redox changes in cytochrome o.
    Sedgwick EG; Bragg PD
    Arch Biochem Biophys; 1990 Nov; 282(2):372-6. PubMed ID: 2173483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of hydrogen ion diffusion across phospholipid vesicle membranes.
    Biegel CM; Gould JM
    Biochemistry; 1981 Jun; 20(12):3474-9. PubMed ID: 6266455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic properties of Na(+) -H(+) antiport in Escherichia coli membrane vesicles: Effects of imposed electrical potential, proton gradient, and internal pH.
    Bassilana M; Damiano E; Leblanc G
    Biochemistry; 1984 Oct; 23(22):5288-94. PubMed ID: 21128368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical and spectroscopic study of pyranine fluorescent probe: role of intermediates in pyranine oxidation.
    Velásquez G; Ureta-Zañartu MS; López-Alarcón C; Aspée A
    J Phys Chem B; 2011 May; 115(20):6661-7. PubMed ID: 21539332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles.
    Kano K; Fendler JH
    Biochim Biophys Acta; 1978 May; 509(2):289-99. PubMed ID: 26400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrochemical proton gradient in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):848-54. PubMed ID: 14664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the rate of rapid pH equilibration across isolated sarcoplasmic reticulum membranes.
    Nunogaki K; Kasai M
    Biochem Biophys Res Commun; 1986 Nov; 140(3):934-40. PubMed ID: 3022738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles.
    Bassilana M; Damiano E; Leblanc G
    Biochemistry; 1984 Feb; 23(5):1015-22. PubMed ID: 6324854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle acidification driven by a millionfold proton gradient: a model for acid influx through gastric cell membranes.
    Barreto J; Lichtenberger LM
    Am J Physiol; 1992 Jan; 262(1 Pt 1):G30-4. PubMed ID: 1310222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Endocytosis and intracellular fate of liposomes using pyranine as a probe.
    Straubinger RM; Papahadjopoulos D; Hong KL
    Biochemistry; 1990 May; 29(20):4929-39. PubMed ID: 2163672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles.
    Letellier L; Shechter E
    Eur J Biochem; 1979 Dec; 102(2):441-7. PubMed ID: 118877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G; Rimon G; Kaback HR
    Biochemistry; 1980 May; 19(11):2522-8. PubMed ID: 6992861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytochrome o type oxidase from Escherichia coli. Characterization of the enzyme and mechanism of electrochemical proton gradient generation.
    Matsushita K; Patel L; Kaback HR
    Biochemistry; 1984 Sep; 23(20):4703-14. PubMed ID: 6093862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics and mechanism of long-chain fatty acid transport into phosphatidylcholine vesicles from various donor systems.
    Thomas RM; Baici A; Werder M; Schulthess G; Hauser H
    Biochemistry; 2002 Feb; 41(5):1591-601. PubMed ID: 11814353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The fluorescence intensity of the lipophilic probe N-phenyl-1-naphthylamine responds to the oxidation-reduction state of the respiratory chain in everted membrane vesicles of Escherichia coli.
    Sedgwick EG; Bragg PD
    FEBS Lett; 1987 Jun; 218(1):22-6. PubMed ID: 3297782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW; Patel L; Rottenberg H; Kaback HR
    Biochemistry; 1980 Jan; 19(1):1-9. PubMed ID: 6986161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simultaneous pH and temperature measurements using pyranine as a molecular probe.
    Wong FH; Fradin C
    J Fluoresc; 2011 Jan; 21(1):299-312. PubMed ID: 20922469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.