These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 6319341)

  • 21. Newborn puppy cerebral acid-base regulation in experimental asphyxia and recovery.
    Nattie EE; Edwards WH; Marin-Padilla M
    J Appl Physiol Respir Environ Exerc Physiol; 1984 May; 56(5):1178-86. PubMed ID: 6327580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of acid-base changes on carbachol- and potassium-induced contractions of taenia coli of the rabbit.
    Löfqvist J; Nilsson E
    Acta Physiol Scand; 1981 Jan; 111(1):59-68. PubMed ID: 6784447
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Central chemical regulation of respiration in term newborn.
    Bureau MA; Bégin R; Berthiaume Y
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Dec; 47(6):1212-7. PubMed ID: 43860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Wien effect in compensated metabolic acidosis.
    Razavi AK; Burns B; Sciuto AM; Gurtner GH; Davies DG
    Respir Physiol; 1977 Feb; 29(1):25-33. PubMed ID: 15306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-base relationships between CSF and blood during acute metabolic acidosis.
    Davies DG; Fitzgerald RS; Gartner GH
    J Appl Physiol; 1973 Feb; 34(2):243-8. PubMed ID: 4686357
    [No Abstract]   [Full Text] [Related]  

  • 26. Effects of altered CSF [H+] on ventilatory responses to exercise in the awake goat.
    Smith CA; Jameson LC; Dempsey JA
    J Appl Physiol (1985); 1988 Aug; 65(2):921-7. PubMed ID: 3139621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. CSF bicarbonate regulation in metabolic acidosis: role of HCO3- formation in CNS.
    Herrera L; Kazemi H
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Nov; 49(5):778-83. PubMed ID: 7191842
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Restoration of CSF [HCO3-] after its experimental lowering in normocapnic conditions.
    Weyne J; Kazemi H; Leusen I
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Aug; 47(2):369-76. PubMed ID: 112088
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CSF acid-base regulation and ventilation during acute hypercapnia in the newborn dog.
    Nattie EE; Edwards WH
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Mar; 50(3):566-74. PubMed ID: 6788736
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Changes in brain ECF pH during metabolic acidosis and alkalosis: a microelectrode study.
    Javaheri S; De Hemptinne A; Vanheel B; Leusen I
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Dec; 55(6):1849-53. PubMed ID: 6420378
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationship of CSF pH, O2, and CO2 responses in metabolic acidosis and alkalosis in humans.
    Irsigler GB; Stafford MJ; Severinghaus JW
    J Appl Physiol Respir Environ Exerc Physiol; 1980 Feb; 48(2):355-61. PubMed ID: 6767670
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Vasopressin in plasma and cerebrospinal fluid of dogs during hypoxia or acidosis.
    Wang BC; Sundet WD; Goetz KL
    Am J Physiol; 1984 Oct; 247(4 Pt 1):E449-55. PubMed ID: 6496666
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The CDF-blood potential and the regulation of the bicarbonate concentration of CSF during acidosis in the cat.
    Pannier JL; Weyne J; Leusen I
    Life Sci I; 1971 Mar; 10(5):287-300. PubMed ID: 5575413
    [No Abstract]   [Full Text] [Related]  

  • 34. Effects of SITS, an anion transport blocker, on CSF ionic composition in metabolic alkalosis.
    Javaheri S; Weyne J; Demeester G; Leusen I
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jul; 57(1):92-7. PubMed ID: 6469796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intravenous administration of a polyionic solution containing 84 mEq/l of lactate resolves experimentally induced hyperchloraemic acidosis in horses.
    Romão FT; Pereira PF; Flaiban KK; Dearo AC; Fernandes TM; Lisbôa JA
    Equine Vet J; 2017 Jan; 49(1):87-93. PubMed ID: 26509916
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sampling and analysis of cerebrospinal fluid for chronic studies in awake rats.
    Lai YL; Smith PM; Lamm WJ; Hildebrandt J
    J Appl Physiol Respir Environ Exerc Physiol; 1983 Jun; 54(6):1754-7. PubMed ID: 6409862
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endothelin and nitric oxide mediate adaptation of the cortical collecting duct to metabolic acidosis.
    Tsuruoka S; Watanabe S; Purkerson JM; Fujimura A; Schwartz GJ
    Am J Physiol Renal Physiol; 2006 Oct; 291(4):F866-73. PubMed ID: 16705153
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Acute respiratory acidosis: large-dose furosemide and cerebrospinal fluid ions.
    Javaheri S; Corbett W; Adams JM; Davis PJ; Gartside PS
    J Appl Physiol (1985); 1994 Jun; 76(6):2651-5. PubMed ID: 7928896
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of blood gas and acid-base measurements in arterial and venous blood samples in patients with uremic acidosis and diabetic ketoacidosis in the emergency room.
    Gokel Y; Paydas S; Koseoglu Z; Alparslan N; Seydaoglu G
    Am J Nephrol; 2000; 20(4):319-23. PubMed ID: 10970986
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acute but not chronic metabolic acidosis potentiates the acetylcholine-induced reduction in blood pressure: an endothelium-dependent effect.
    Celotto AC; Ferreira LG; Capellini VK; Albuquerque AA; Rodrigues AJ; Evora PR
    Braz J Med Biol Res; 2016 Feb; 49(2):e5007. PubMed ID: 26648089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.