These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 6319722)

  • 1. Effect of superoxide generation on rat heart mitochondrial pyruvate utilization.
    Guarnieri C; Muscari C; Ceconi C; Flamigni F; Caldarera CM
    J Mol Cell Cardiol; 1983 Dec; 15(12):859-62. PubMed ID: 6319722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alterations in heart sarcolemmal Ca2(+)-ATPase and Ca2(+)-binding activities due to oxygen free radicals.
    Kaneko M; Singal PK; Dhalla NS
    Basic Res Cardiol; 1990; 85(1):45-54. PubMed ID: 2158297
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of calcium potentiation of oxygen free radical injury to renal mitochondria. A model for post-ischemic and toxic mitochondrial damage.
    Malis CD; Bonventre JV
    J Biol Chem; 1986 Oct; 261(30):14201-8. PubMed ID: 2876985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depression of heart sarcolemmal Ca2+-pump activity by oxygen free radicals.
    Kaneko M; Beamish RE; Dhalla NS
    Am J Physiol; 1989 Feb; 256(2 Pt 2):H368-74. PubMed ID: 2537032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decrease in heart mitochondrial creatine kinase activity due to oxygen free radicals.
    Yuan G; Kaneko M; Masuda H; Hon RB; Kobayashi A; Yamazaki N
    Biochim Biophys Acta; 1992 Nov; 1140(1):78-84. PubMed ID: 1329980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of ryanodine on oxygen free radical-induced dysfunction of cardiac sarcoplasmic reticulum.
    Okabe E; Kuse K; Sekishita T; Suyama N; Tanaka K; Ito H
    J Pharmacol Exp Ther; 1991 Mar; 256(3):868-75. PubMed ID: 1848630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mediation of sarcoplasmic reticulum disruption in the ischemic myocardium: proposed mechanism by the interaction of hydrogen ions and oxygen free radicals.
    Hess ML; Krause S; Kontos HA
    Adv Exp Med Biol; 1983; 161():377-89. PubMed ID: 6307008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of lipid peroxidation on heart mitochondria oxygen consuming and calcium transporting capacities.
    Ceconi C; Curello S; Albertini A; Ferrari R
    Mol Cell Biochem; 1988 Jun; 81(2):131-5. PubMed ID: 3173348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alterations in cardiac contractile proteins due to oxygen free radicals.
    Suzuki S; Kaneko M; Chapman DC; Dhalla NS
    Biochim Biophys Acta; 1991 May; 1074(1):95-100. PubMed ID: 1646033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship between mechanical dysfunction and depression of sarcolemmal Ca(2+)-pump activity in hearts perfused with oxygen free radicals.
    Matsubara T; Dhalla NS
    Mol Cell Biochem; 1996; 160-161():179-85. PubMed ID: 8901472
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calmodulin participation in oxygen radical-induced cardiac sarcoplasmic reticulum calcium uptake reduction.
    Okabe E; Kato Y; Sasaki H; Saito G; Hess ML; Ito H
    Arch Biochem Biophys; 1987 Jun; 255(2):464-8. PubMed ID: 3036009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Singlet oxygen interaction with Ca(2+)-ATPase of cardiac sarcoplasmic reticulum.
    Kukreja RC; Kearns AA; Zweier JL; Kuppusamy P; Hess ML
    Circ Res; 1991 Oct; 69(4):1003-14. PubMed ID: 1657435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modification of contractile proteins by oxygen free radicals in rat heart.
    Kaneko M; Masuda H; Suzuki H; Matsumoto Y; Kobayashi A; Yamazaki N
    Mol Cell Biochem; 1993 Aug; 125(2):163-9. PubMed ID: 8283971
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of oxygen free radicals on calcium permeability and calcium loading at steady state in cardiac sarcoplasmic reticulum.
    Okabe E; Odajima C; Taga R; Kukreja RC; Hess ML; Ito H
    Mol Pharmacol; 1988 Sep; 34(3):388-94. PubMed ID: 2843752
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibitory effect of superoxide radicals on cardiac myofibrillar ATPase activity.
    Ventura C; Guarnieri C; Caldarera CM
    Ital J Biochem; 1985; 34(4):267-74. PubMed ID: 2997080
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superoxide radical as electron donor for oxidative phosphorylation of ADP.
    Mailer K
    Biochem Biophys Res Commun; 1990 Jul; 170(1):59-64. PubMed ID: 2164811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of cardiac sarcolemma Na(+)-K+ ATPase by oxyradical generating systems.
    Shao Q; Matsubara T; Bhatt SK; Dhalla NS
    Mol Cell Biochem; 1995 Jun 7-21; 147(1-2):139-44. PubMed ID: 7494543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of anthracycline antibiotics on oxygen radical formation in rat heart.
    Doroshow JH
    Cancer Res; 1983 Feb; 43(2):460-72. PubMed ID: 6293697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of superoxide generation on the ability of mitochondria to take up and retain Ca2+.
    Harris EJ; Booth R; Cooper MB
    FEBS Lett; 1982 Sep; 146(2):267-72. PubMed ID: 6291991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxides from mitochondrial complex III: the role of manganese superoxide dismutase.
    Raha S; McEachern GE; Myint AT; Robinson BH
    Free Radic Biol Med; 2000 Jul; 29(2):170-80. PubMed ID: 10980405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.