These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 6320063)

  • 1. The distribution of afferent fibers from the gastrocnemius-soleus muscle in the dorsal horn of the cat, as revealed by the transport of horseradish peroxidase.
    Craig AD; Mense S
    Neurosci Lett; 1983 Nov; 41(3):233-8. PubMed ID: 6320063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spinal cord projections from hindlimb muscle nerves in the rat studied by transganglionic transport of horseradish peroxidase, wheat germ agglutinin conjugated horseradish peroxidase, or horseradish peroxidase with dimethylsulfoxide.
    Molander C; Grant G
    J Comp Neurol; 1987 Jun; 260(2):246-55. PubMed ID: 3038969
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal and supraspinal terminations of primary afferent fibers from the gastrocnemius-soleus muscle in the cat.
    Mense S; Craig AD
    Neuroscience; 1988 Sep; 26(3):1023-35. PubMed ID: 3200424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of somatic and visceral primary afferent fibres within the thoracic spinal cord of the cat.
    Cervero F; Connell LA
    J Comp Neurol; 1984 Nov; 230(1):88-98. PubMed ID: 6096416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fine afferent fibers from viscera do not terminate in the substantia gelatinosa of the thoracic spinal cord.
    Cervero F; Connell LA
    Brain Res; 1984 Mar; 294(2):370-4. PubMed ID: 6200187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The projection of the medial and posterior articular nerves of the cat's knee to the spinal cord.
    Craig AD; Heppelmann B; Schaible HG
    J Comp Neurol; 1988 Oct; 276(2):279-88. PubMed ID: 2464629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The central projection of muscle afferent fibres to the lower medulla and upper spinal cord: an anatomical study in the cat with the transganglionic transport method.
    Nyberg G; Blomqvist A
    J Comp Neurol; 1984 Nov; 230(1):99-109. PubMed ID: 6096417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase.
    Kuo DC; Nadelhaft I; Hisamitsu T; de Groat WC
    J Comp Neurol; 1983 May; 216(2):162-74. PubMed ID: 6863600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Somatotopic organization of cutaneous afferent terminals and dorsal horn neuronal receptive fields in the superficial and deep laminae of the rat lumbar spinal cord.
    Woolf CJ; Fitzgerald M
    J Comp Neurol; 1986 Sep; 251(4):517-31. PubMed ID: 3782502
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology of midlumbar interneurones relaying information from group II muscle afferents in the cat spinal cord.
    Bras H; Cavallari P; Jankowska E; Kubin L
    J Comp Neurol; 1989 Dec; 290(1):1-15. PubMed ID: 2592606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trajectory of group Ia afferent fibers stained with horseradish peroxidase in the lumbosacral spinal cord of the cat: three dimensional reconstructions from serial sections.
    Ishizuka N; Mannen H; Hongo T; Sasaki S
    J Comp Neurol; 1979 Jul; 186(2):189-211. PubMed ID: 87406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Laminar distribution and somatotopic organization of primary afferent fibers from hindlimb nerves in the dorsal horn. A study by transganglionic transport of horseradish peroxidase in the rat.
    Molander C; Grant G
    Neuroscience; 1986 Sep; 19(1):297-312. PubMed ID: 3785668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crossed and uncrossed projections to cat sacrocaudal spinal cord: I. Axons from cutaneous receptors.
    Ritz LA; Brown PB; Bailey SM
    J Comp Neurol; 1989 Nov; 289(2):284-93. PubMed ID: 2808767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological studies of cutaneous inputs to dorsal horn laminae I-IV of adult chickens.
    Woodbury CJ
    J Neurophysiol; 1992 Feb; 67(2):241-54. PubMed ID: 1569460
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Excitability changes of ankle extensor group Ia and Ib fibers during fictive locomotion in the cat.
    Dueñas SH; Rudomin P
    Exp Brain Res; 1988; 70(1):15-25. PubMed ID: 3402561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Projections from C2 and C3 nerves supplying muscles and skin of the cat neck: a study using transganglionic transport of horseradish peroxidase.
    Abrahams VC; Richmond FJ; Keane J
    J Comp Neurol; 1984 Nov; 230(1):142-54. PubMed ID: 6096411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The extent of polysynaptic responses in the dorsal spinocerebellar tract to stimulation of group I afferent fibers in gastrocnemius-soleus.
    Osborn CE; Poppele RE
    J Neurosci; 1988 Jan; 8(1):316-9. PubMed ID: 3339414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Specific and nonspecific mechanisms involved in generation of PAD of group Ia afferents in cat spinal cord.
    Jiménez I; Rudomín P; Solodkin M; Vyklický L
    J Neurophysiol; 1984 Nov; 52(5):921-40. PubMed ID: 6096522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal termination of nociceptive afferent fibres from deep tissues in the cat.
    Mense S; Prabhakar NR
    Neurosci Lett; 1986 May; 66(2):169-74. PubMed ID: 3725183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The central termination of sensory fibers from nerves to the gastrocnemius muscle of the rat.
    Panneton WM; Gan Q; Juric R
    Neuroscience; 2005; 134(1):175-87. PubMed ID: 15953682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.