These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 6320063)
21. Central projections from cat suboccipital muscles: a study using transganglionic transport of horseradish peroxidase. Bakker DA; Richmond FJ; Abrahams VC J Comp Neurol; 1984 Sep; 228(3):409-21. PubMed ID: 6480919 [TBL] [Abstract][Full Text] [Related]
22. Central projections of primary afferents from the interosseous nerve in the pigeon. Ohmori Y; Necker R Brain Res Bull; 1995; 38(3):269-74. PubMed ID: 7496821 [TBL] [Abstract][Full Text] [Related]
23. Contralateral termination of primary afferent axons in the sacral and caudal segments of the cat, as studied by anterograde transport of horseradish peroxidase. Matsushita M; Tanami T J Comp Neurol; 1983 Oct; 220(2):206-18. PubMed ID: 6643726 [TBL] [Abstract][Full Text] [Related]
24. The organization of pudendal motoneurons and primary afferent projections in the spinal cord of the rhesus monkey revealed by horseradish peroxidase. Roppolo JR; Nadelhaft I; de Groat WC J Comp Neurol; 1985 Apr; 234(4):475-88. PubMed ID: 3988996 [TBL] [Abstract][Full Text] [Related]
25. Termination patterns of identified group II and III afferent fibres from deep tissues in the spinal cord of the cat. Hoheisel U; Lehmann-Willenbrock E; Mense S Neuroscience; 1989; 28(2):495-507. PubMed ID: 2522168 [TBL] [Abstract][Full Text] [Related]
26. Central projections of the sciatic, saphenous, median, and ulnar nerves of the rat demonstrated by transganglionic transport of choleragenoid-HRP (B-HRP) and wheat germ agglutinin-HRP (WGA-HRP). LaMotte CC; Kapadia SE; Shapiro CM J Comp Neurol; 1991 Sep; 311(4):546-62. PubMed ID: 1721924 [TBL] [Abstract][Full Text] [Related]
27. Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Molenaar I; Kuypers HG Brain Res; 1978 Sep; 152(3):429-50. PubMed ID: 80246 [TBL] [Abstract][Full Text] [Related]
28. The pattern of spinal and medullary projections from a cutaneous nerve and a muscle nerve of the forelimb of the cat: a study using the transganglionic transport of HRP. Abrahams VC; Swett JE J Comp Neurol; 1986 Apr; 246(1):70-84. PubMed ID: 3700718 [TBL] [Abstract][Full Text] [Related]
29. The distribution of visceral primary afferents from the pelvic nerve to Lissauer's tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. Morgan C; Nadelhaft I; de Groat WC J Comp Neurol; 1981 Sep; 201(3):415-40. PubMed ID: 7276258 [TBL] [Abstract][Full Text] [Related]
30. Central distribution of afferent pathways from the uterus of the cat. Kawatani M; Takeshige C; de Groat WC J Comp Neurol; 1990 Dec; 302(2):294-304. PubMed ID: 1705267 [TBL] [Abstract][Full Text] [Related]
31. On the problem of lamination in the superficial dorsal horn of mammals: a reappraisal of the substantia gelatinosa in postnatal life. Woodbury CJ; Ritter AM; Koerber HR J Comp Neurol; 2000 Jan; 417(1):88-102. PubMed ID: 10660890 [TBL] [Abstract][Full Text] [Related]
32. Cells of origin of long descending propriospinal fibers connecting the spinal enlargements in cat and monkey determined by horseradish peroxidase and electrophysiological techniques. Skinner RD; Coulter JD; Adams RJ; Remmel RS J Comp Neurol; 1979 Dec; 188(3):443-54. PubMed ID: 114558 [TBL] [Abstract][Full Text] [Related]
33. Prenatal growth of fine-diameter primary afferents into the rat spinal cord: a transganglionic tracer study. Fitzgerald M J Comp Neurol; 1987 Jul; 261(1):98-104. PubMed ID: 2442203 [TBL] [Abstract][Full Text] [Related]
34. The morphology of group Ib afferent fibre collaterals in the spinal cord of the cat. Brown AG; Fyffe RE J Physiol; 1979 Nov; 296():215-26. PubMed ID: 529088 [TBL] [Abstract][Full Text] [Related]
35. Analysis of calcitonin gene-related peptide-like immunoreactivity in the cat dorsal spinal cord and dorsal root ganglia provide evidence for a multisegmental projection of nociceptive C-fiber primary afferents. Traub RJ; Allen B; Humphrey E; Ruda MA J Comp Neurol; 1990 Dec; 302(3):562-74. PubMed ID: 1702117 [TBL] [Abstract][Full Text] [Related]
36. Ultrastructure of pacinian corpuscle primary afferent terminals in the cat spinal cord. Semba K; Masarachia P; Malamed S; Jacquin M; Harris S; Egger MD Brain Res; 1984 Jun; 302(1):135-50. PubMed ID: 6203612 [TBL] [Abstract][Full Text] [Related]
37. Slow potentials activated by afferent and direct stimulation in spinal interneurons of laminae III-V. Schneider SP Brain Res; 1992 Dec; 599(1):129-34. PubMed ID: 1283555 [TBL] [Abstract][Full Text] [Related]
38. Crossed and uncrossed projections to cat sacrocaudal spinal cord: II. Axons from muscle spindle primary endings. Ritz LA; Bailey SM; Carter RL; Sparkes ML; Masson RL; Rhoton EL J Comp Neurol; 1991 Feb; 304(2):316-29. PubMed ID: 2016422 [TBL] [Abstract][Full Text] [Related]
39. The central projection of masticatory afferent fibers to the trigeminal sensory nuclear complex and upper cervical spinal cord. Shigenaga Y; Sera M; Nishimori T; Suemune S; Nishimura M; Yoshida A; Tsuru K J Comp Neurol; 1988 Feb; 268(4):489-507. PubMed ID: 2451684 [TBL] [Abstract][Full Text] [Related]
40. The evidence for nitric oxide synthase immunopositivity in the monosynaptic Ia-motoneuron pathway of the dog. Marsala J; Lukácová N; Sulla I; Wohlfahrt P; Marsala M Exp Neurol; 2005 Sep; 195(1):161-78. PubMed ID: 15979072 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]