BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 6320068)

  • 1. Enrichment of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in cholinergic axon terminals of the Torpedo electric organ.
    Röhrkasten A; Zimmermann H
    Neurosci Lett; 1983 Dec; 42(2):201-6. PubMed ID: 6320068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ectonucleotidase activities associated with cholinergic synaptosomes isolated from Torpedo electric organ.
    Grondal EJ; Zimmermann H
    J Neurochem; 1986 Sep; 47(3):871-81. PubMed ID: 3016188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin.
    Rabasseda X; Solsona C; Marsal J; Egea G; Bizzini B
    FEBS Lett; 1987 Mar; 213(2):337-40. PubMed ID: 3556585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenosine and related nucleotides alter calcium uptake in depolarized synaptosomes of torpedo electric organ.
    Quintana J
    J Neural Transm; 1985; 64(3-4):271-84. PubMed ID: 4086992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of protein phosphorylation in acetylcholine receptor-enriched membrane preparations from Torpedo fuscomaculata.
    Carstens ME; Weller M; Neethling AC; Taljaard JJ
    Mol Cell Biochem; 1982 Feb; 42(3):161-6. PubMed ID: 6278288
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation.
    Shelly M; Lim BK; Cancedda L; Heilshorn SC; Gao H; Poo MM
    Science; 2010 Jan; 327(5965):547-52. PubMed ID: 20110498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The release of adenosine at the electric organ of Torpedo. A study using a continuous chemiluminescent method.
    Solsona C; Marsal J; Saltó C
    Neurochem Res; 1990 Jan; 15(1):77-82. PubMed ID: 2325827
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible modulation of phosphorylation of acetylcholine receptor-enriched membrane preparations.
    Carstens ME; Neethling AC; Taljaard JJ
    Neurochem Res; 1984 Feb; 9(2):195-206. PubMed ID: 6330594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecto-adenosine triphosphatase activity at the cholinergic nerve endings of the Torpedo electric organ.
    Keller F; Zimmermann H
    Life Sci; 1983 Dec; 33(26):2635-41. PubMed ID: 6141482
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implication of adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, adenosine 5'-mono-, di-, and triphosphate and fructose-2,6-bisphosphate in the regulation of the glycolytic pathway in relation to the gametogenic cycle in the mussel mytilus galloprovincialis Lmk.
    Díaz Enrich MJ; Ibarguren I
    Mol Cell Biochem; 2003 Oct; 252(1-2):339-45. PubMed ID: 14577608
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The major vault protein (MVP100) is contained in cholinergic nerve terminals of electric ray electric organ.
    Herrmann C; Volknandt W; Wittich B; Kellner R; Zimmermann H
    J Biol Chem; 1996 Jun; 271(23):13908-15. PubMed ID: 8662815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biochemistry of cholinergic synapses as exemplified by the electric organ of Torpedo.
    Whittaker VP; Zimmermann H; Dowdall MJ
    J Neural Transm; 1975; Suppl 12():39-60. PubMed ID: 51043
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of potassium depolarization on intracellular compartmentalization of ATP in cholinergic synaptosomes isolated from Torpedo electric organ.
    Solsona C; Saltó C; Ymbern A
    Biochim Biophys Acta; 1991 Oct; 1095(1):57-62. PubMed ID: 1834177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of cyclic nucleotides in islated rat glomeruli: role of histamine, carbamylcholine, parathyroid hormone, and angiotensin-II.
    Torres VE; Northrup TE; Edwards RM; Shah SV; Dousa TP
    J Clin Invest; 1978 Dec; 62(6):1334-43. PubMed ID: 219028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma clearance rates and renal clearance of 3H-labeled cyclic AMP and 3H-labeled cyclic GMP in the dog.
    Blonde L; Wehmann RE; Steiner AL
    J Clin Invest; 1974 Jan; 53(1):163-72. PubMed ID: 4357610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glycine receptor in hippocampal neurons as a target for action of extracellular cyclic nucleotides.
    Bukanova JV; Solntseva EI; Kondratenko RV; Skrebitsky VG
    Neurosci Lett; 2014 Feb; 561():58-63. PubMed ID: 24373992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An equilibrium study of the cooperative binding of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate to the adenosine cyclic 3',5'-monophosphate receptor protein from Escherichia coli.
    Takahashi M; Blazy B; Baudras A
    Biochemistry; 1980 Oct; 19(22):5124-30. PubMed ID: 6257276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-affinity, sodium-gradient-dependent transport of choline into vesiculated presynaptic plasma membrane fragments from the electric organ of Torpedo marmorata and reconstitution of the solubilized transporter into liposomes.
    Ducis I; Whittaker VP
    Biochim Biophys Acta; 1985 Apr; 815(1):109-27. PubMed ID: 3986197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine uptake by cholinergic synaptosomes from Torpedo electric organ.
    Meunier FM; Morel N
    J Neurochem; 1978 Oct; 31(4):845-51. PubMed ID: 702150
    [No Abstract]   [Full Text] [Related]  

  • 20. Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from Torpedo electric organ.
    Girod R; Eder-Colli L; Medilanski J; Dunant Y; Tabti N; Poo MM
    J Physiol; 1992 May; 450():325-40. PubMed ID: 1432711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.