These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 6320068)
1. Enrichment of cyclic adenosine 3',5'-monophosphate and cyclic guanosine 3',5'-monophosphate in cholinergic axon terminals of the Torpedo electric organ. Röhrkasten A; Zimmermann H Neurosci Lett; 1983 Dec; 42(2):201-6. PubMed ID: 6320068 [TBL] [Abstract][Full Text] [Related]
2. Ectonucleotidase activities associated with cholinergic synaptosomes isolated from Torpedo electric organ. Grondal EJ; Zimmermann H J Neurochem; 1986 Sep; 47(3):871-81. PubMed ID: 3016188 [TBL] [Abstract][Full Text] [Related]
3. ATP release from pure cholinergic synaptosomes is not blocked by tetanus toxin. Rabasseda X; Solsona C; Marsal J; Egea G; Bizzini B FEBS Lett; 1987 Mar; 213(2):337-40. PubMed ID: 3556585 [TBL] [Abstract][Full Text] [Related]
4. Adenosine and related nucleotides alter calcium uptake in depolarized synaptosomes of torpedo electric organ. Quintana J J Neural Transm; 1985; 64(3-4):271-84. PubMed ID: 4086992 [TBL] [Abstract][Full Text] [Related]
5. Characterization of protein phosphorylation in acetylcholine receptor-enriched membrane preparations from Torpedo fuscomaculata. Carstens ME; Weller M; Neethling AC; Taljaard JJ Mol Cell Biochem; 1982 Feb; 42(3):161-6. PubMed ID: 6278288 [TBL] [Abstract][Full Text] [Related]
6. Local and long-range reciprocal regulation of cAMP and cGMP in axon/dendrite formation. Shelly M; Lim BK; Cancedda L; Heilshorn SC; Gao H; Poo MM Science; 2010 Jan; 327(5965):547-52. PubMed ID: 20110498 [TBL] [Abstract][Full Text] [Related]
7. The release of adenosine at the electric organ of Torpedo. A study using a continuous chemiluminescent method. Solsona C; Marsal J; Saltó C Neurochem Res; 1990 Jan; 15(1):77-82. PubMed ID: 2325827 [TBL] [Abstract][Full Text] [Related]
8. Possible modulation of phosphorylation of acetylcholine receptor-enriched membrane preparations. Carstens ME; Neethling AC; Taljaard JJ Neurochem Res; 1984 Feb; 9(2):195-206. PubMed ID: 6330594 [TBL] [Abstract][Full Text] [Related]
9. Ecto-adenosine triphosphatase activity at the cholinergic nerve endings of the Torpedo electric organ. Keller F; Zimmermann H Life Sci; 1983 Dec; 33(26):2635-41. PubMed ID: 6141482 [TBL] [Abstract][Full Text] [Related]
10. Implication of adenosine 3',5'-cyclic monophosphate, guanosine 3',5'-cyclic monophosphate, adenosine 5'-mono-, di-, and triphosphate and fructose-2,6-bisphosphate in the regulation of the glycolytic pathway in relation to the gametogenic cycle in the mussel mytilus galloprovincialis Lmk. Díaz Enrich MJ; Ibarguren I Mol Cell Biochem; 2003 Oct; 252(1-2):339-45. PubMed ID: 14577608 [TBL] [Abstract][Full Text] [Related]
11. The major vault protein (MVP100) is contained in cholinergic nerve terminals of electric ray electric organ. Herrmann C; Volknandt W; Wittich B; Kellner R; Zimmermann H J Biol Chem; 1996 Jun; 271(23):13908-15. PubMed ID: 8662815 [TBL] [Abstract][Full Text] [Related]
12. The biochemistry of cholinergic synapses as exemplified by the electric organ of Torpedo. Whittaker VP; Zimmermann H; Dowdall MJ J Neural Transm; 1975; Suppl 12():39-60. PubMed ID: 51043 [No Abstract] [Full Text] [Related]
13. Effects of potassium depolarization on intracellular compartmentalization of ATP in cholinergic synaptosomes isolated from Torpedo electric organ. Solsona C; Saltó C; Ymbern A Biochim Biophys Acta; 1991 Oct; 1095(1):57-62. PubMed ID: 1834177 [TBL] [Abstract][Full Text] [Related]
14. Modulation of cyclic nucleotides in islated rat glomeruli: role of histamine, carbamylcholine, parathyroid hormone, and angiotensin-II. Torres VE; Northrup TE; Edwards RM; Shah SV; Dousa TP J Clin Invest; 1978 Dec; 62(6):1334-43. PubMed ID: 219028 [TBL] [Abstract][Full Text] [Related]
15. Plasma clearance rates and renal clearance of 3H-labeled cyclic AMP and 3H-labeled cyclic GMP in the dog. Blonde L; Wehmann RE; Steiner AL J Clin Invest; 1974 Jan; 53(1):163-72. PubMed ID: 4357610 [TBL] [Abstract][Full Text] [Related]
16. Glycine receptor in hippocampal neurons as a target for action of extracellular cyclic nucleotides. Bukanova JV; Solntseva EI; Kondratenko RV; Skrebitsky VG Neurosci Lett; 2014 Feb; 561():58-63. PubMed ID: 24373992 [TBL] [Abstract][Full Text] [Related]
17. An equilibrium study of the cooperative binding of adenosine cyclic 3',5'-monophosphate and guanosine cyclic 3',5'-monophosphate to the adenosine cyclic 3',5'-monophosphate receptor protein from Escherichia coli. Takahashi M; Blazy B; Baudras A Biochemistry; 1980 Oct; 19(22):5124-30. PubMed ID: 6257276 [TBL] [Abstract][Full Text] [Related]
18. High-affinity, sodium-gradient-dependent transport of choline into vesiculated presynaptic plasma membrane fragments from the electric organ of Torpedo marmorata and reconstitution of the solubilized transporter into liposomes. Ducis I; Whittaker VP Biochim Biophys Acta; 1985 Apr; 815(1):109-27. PubMed ID: 3986197 [TBL] [Abstract][Full Text] [Related]
19. Adenosine uptake by cholinergic synaptosomes from Torpedo electric organ. Meunier FM; Morel N J Neurochem; 1978 Oct; 31(4):845-51. PubMed ID: 702150 [No Abstract] [Full Text] [Related]
20. Pulsatile release of acetylcholine by nerve terminals (synaptosomes) isolated from Torpedo electric organ. Girod R; Eder-Colli L; Medilanski J; Dunant Y; Tabti N; Poo MM J Physiol; 1992 May; 450():325-40. PubMed ID: 1432711 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]