These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
198 related articles for article (PubMed ID: 6320185)
1. H2-uptake activity of the MoFe protein component of Azotobacter vinelandii nitrogenase. Wang ZC; Watt GD Proc Natl Acad Sci U S A; 1984 Jan; 81(2):376-9. PubMed ID: 6320185 [TBL] [Abstract][Full Text] [Related]
2. Stoichiometry and spectral properties of the MoFe cofactor and noncofactor redox centers in the MoFe protein of nitrogenase from Azotobacter vinelandii. Watt GD; Burns A; Tennent DL Biochemistry; 1981 Dec; 20(25):7272-7. PubMed ID: 6274395 [TBL] [Abstract][Full Text] [Related]
3. Kinetics and mechanism of the reaction of cyanide with molybdenum nitrogenase from Azotobacter vinelandii. Lowe DJ; Fisher K; Thorneley RN; Vaughn SA; Burgess BK Biochemistry; 1989 Oct; 28(21):8460-6. PubMed ID: 2605195 [TBL] [Abstract][Full Text] [Related]
4. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
5. Changes in the EPR signal of dinitrogenase from Azotobacter vinelandii during the lag period before hydrogen evolution begins. Hageman RV; Burris RH J Biol Chem; 1979 Nov; 254(22):11189-92. PubMed ID: 227860 [TBL] [Abstract][Full Text] [Related]
6. Characterization of the metal clusters in the nitrogenase molybdenum-iron and vanadium-iron proteins of Azotobacter vinelandii using magnetic circular dichroism spectroscopy. Morningstar JE; Johnson MK; Case EE; Hales BJ Biochemistry; 1987 Apr; 26(7):1795-800. PubMed ID: 3474027 [TBL] [Abstract][Full Text] [Related]
7. Comparison of redox and EPR properties of the molybdenum iron proteins of Clostridium pasteurianum and Azotobacter vinelandii nitrogenases. Morgan TV; Mortenson LE; McDonald JW; Watt GD J Inorg Biochem; 1988 Jun; 33(2):111-20. PubMed ID: 2842451 [TBL] [Abstract][Full Text] [Related]
8. Magnetic susceptibility studies of native and thionine-oxidized molybdenum-iron protein from Azotobacter vinelandii nitrogenase. Smith JP; Emptage MH; Orme-Johnson WH J Biol Chem; 1982 Mar; 257(5):2310-3. PubMed ID: 6949899 [TBL] [Abstract][Full Text] [Related]
9. Solubilization of the iron molybdenum cofactor of Azotobacter vinelandii nitrogenase in dimethylformamide and acetonitrile. Lough SM; Jacobs DL; Lyons DM; Watt GD; McDonald JW Biochem Biophys Res Commun; 1986 Sep; 139(2):740-6. PubMed ID: 3021140 [TBL] [Abstract][Full Text] [Related]
10. Role for the nitrogenase MoFe protein alpha-subunit in FeMo-cofactor binding and catalysis. Scott DJ; May HD; Newton WE; Brigle KE; Dean DR Nature; 1990 Jan; 343(6254):188-90. PubMed ID: 2153269 [TBL] [Abstract][Full Text] [Related]
11. Altered nitrogenase MoFe proteins from Azotobacter vinelandii. Analysis of MoFe proteins having amino acid substitutions for the conserved cysteine residues within the beta-subunit. May HD; Dean DR; Newton WE Biochem J; 1991 Jul; 277 ( Pt 2)(Pt 2):457-64. PubMed ID: 1650185 [TBL] [Abstract][Full Text] [Related]
12. Evidence for electron transfer from the nitrogenase iron protein to the molybdenum-iron protein without MgATP hydrolysis: characterization of a tight protein-protein complex. Lanzilotta WN; Fisher K; Seefeldt LC Biochemistry; 1996 Jun; 35(22):7188-96. PubMed ID: 8679547 [TBL] [Abstract][Full Text] [Related]
13. Large anions induce H Wang ZC; Watt GD J Inorg Biochem; 2020 Jul; 208():111075. PubMed ID: 32502717 [TBL] [Abstract][Full Text] [Related]
14. Iron-molybdenum cofactor of nitrogenase: electrochemical determination of the electron stoichiometry of the oxidized/semi-reduced couple. Schultz FA; Gheller SF; Newton WE Biochem Biophys Res Commun; 1988 Apr; 152(2):629-35. PubMed ID: 2835040 [TBL] [Abstract][Full Text] [Related]
15. Mössbauer studies of solid thionin-oxidized MoFe protein of nitrogenase. Lindahl PA; Papaefthymiou V; Orme-Johnson WH; Münck E J Biol Chem; 1988 Dec; 263(36):19412-8. PubMed ID: 2848826 [TBL] [Abstract][Full Text] [Related]
16. Catalytic and biophysical properties of a nitrogenase Apo-MoFe protein produced by a nifB-deletion mutant of Azotobacter vinelandii. Christiansen J; Goodwin PJ; Lanzilotta WN; Seefeldt LC; Dean DR Biochemistry; 1998 Sep; 37(36):12611-23. PubMed ID: 9730834 [TBL] [Abstract][Full Text] [Related]
17. Klebsiella pneumoniae nitrogenase. The pre-steady-state kinetics of MoFe-protein reduction and hydrogen evolution under conditions of limiting electron flux show that the rates of association with the Fe-protein and electron transfer are independent of the oxidation level of the MoFe-protein. Fisher K; Lowe DJ; Thorneley RN Biochem J; 1991 Oct; 279 ( Pt 1)(Pt 1):81-5. PubMed ID: 1656943 [TBL] [Abstract][Full Text] [Related]
18. Spectroscopic evidence for changes in the redox state of the nitrogenase P-cluster during turnover. Chan JM; Christiansen J; Dean DR; Seefeldt LC Biochemistry; 1999 May; 38(18):5779-85. PubMed ID: 10231529 [TBL] [Abstract][Full Text] [Related]
19. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases. Fisher K; Hare ND; Newton WE Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280 [TBL] [Abstract][Full Text] [Related]
20. Electron paramagnetic resonance of nitrogenase and nitrogenase components from Clostridium pasteurianum W5 and Azotobacter vinelandii OP. Orme-Johnson WH; Hamilton WD; Jones TL; Tso MY; Burris RH; Shah VK; Brill WJ Proc Natl Acad Sci U S A; 1972 Nov; 69(11):3142-5. PubMed ID: 4343957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]