These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 6320357)
1. Effects of Streptococcus pneumoniae, Salmonella typhimurium and Francisella tularensis infections on oxidative, glycolytic and lysosomal enzyme activity in red and white skeletal muscle in the rat. Friman G; Ilbäck NG; Beisel WR Scand J Infect Dis; 1984; 16(1):111-9. PubMed ID: 6320357 [TBL] [Abstract][Full Text] [Related]
2. Biochemical responses of the myocardium and red skeletal muscle to Salmonella typhimurium infection in the rat. Ilbäck NG; Friman G; Beisel WR Clin Physiol; 1983 Dec; 3(6):551-63. PubMed ID: 6365418 [TBL] [Abstract][Full Text] [Related]
3. Content and synthesis of glycolytic enzymes and creatine kinase in skeletal muscles and normal and dystrophic chickens. Petell JK; Lebherz HG Arch Biochem Biophys; 1985 Feb; 237(1):271-80. PubMed ID: 3970544 [TBL] [Abstract][Full Text] [Related]
4. Lysosomal changes in skeletal muscles during the repair of exercise injuries in muscle fibers. Salminen A Acta Physiol Scand Suppl; 1985; 539():1-31. PubMed ID: 2988270 [TBL] [Abstract][Full Text] [Related]
5. Enzyme levels in pools of microdissected human muscle fibres of identified type. Adaptive response to exercise. Essén-Gustavsson B; Henriksson J Acta Physiol Scand; 1984 Apr; 120(4):505-15. PubMed ID: 6237550 [TBL] [Abstract][Full Text] [Related]
6. Condition, prolonged swimming performance and muscle metabolic capacities of cod Gadus morhua. Martínez M; Guderley H; Dutil JD; Winger PD; He P; Walsh SJ J Exp Biol; 2003 Feb; 206(Pt 3):503-11. PubMed ID: 12502771 [TBL] [Abstract][Full Text] [Related]
7. Skeletal muscle fiber type comparison of pyruvate dehydrogenase phosphatase activity and isoform expression in fed and food-deprived rats. Leblanc PJ; Harris RA; Peters SJ Am J Physiol Endocrinol Metab; 2007 Feb; 292(2):E571-6. PubMed ID: 17018773 [TBL] [Abstract][Full Text] [Related]
8. Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits. Hood DA; Zak R; Pette D Eur J Biochem; 1989 Feb; 179(2):275-80. PubMed ID: 2537205 [TBL] [Abstract][Full Text] [Related]
9. Skeletal muscle glycolytic and oxidative enzyme capacities are determinants of insulin sensitivity and muscle composition in obese women. Simoneau JA; Colberg SR; Thaete FL; Kelley DE FASEB J; 1995 Feb; 9(2):273-8. PubMed ID: 7781930 [TBL] [Abstract][Full Text] [Related]
10. Androgens regulate mitochondrial cytochrome c oxidase and lysosomal hydrolases in mouse skeletal muscle. Koenig H; Goldstone A; Lu CY Biochem J; 1980 Oct; 192(1):349-53. PubMed ID: 6272701 [TBL] [Abstract][Full Text] [Related]
11. Influence of training on skeletal muscle enzymatic adaptations in normal and diabetic rats. Noble EG; Ianuzzo CD Am J Physiol; 1985 Oct; 249(4 Pt 1):E360-5. PubMed ID: 2931994 [TBL] [Abstract][Full Text] [Related]
12. Chronic long-term electrostimulation creates a unique metabolic enzyme profile in rabbit fast-twitch muscle. Hood DA; Pette D FEBS Lett; 1989 Apr; 247(2):471-4. PubMed ID: 2714446 [TBL] [Abstract][Full Text] [Related]
13. Altered fiber distribution and fiber-specific glycolytic and oxidative enzyme activity in skeletal muscle of patients with type 2 diabetes. Oberbach A; Bossenz Y; Lehmann S; Niebauer J; Adams V; Paschke R; Schön MR; Blüher M; Punkt K Diabetes Care; 2006 Apr; 29(4):895-900. PubMed ID: 16567834 [TBL] [Abstract][Full Text] [Related]
14. Human skeletal muscle in bacterial infection: enzyme activities and their relationship to age. Aström E; Friman G; Pilström L Scand J Infect Dis; 1977; 9(3):193-5. PubMed ID: 198874 [TBL] [Abstract][Full Text] [Related]
15. Adaptations in metabolic capacity of rat soleus after paralysis. Otis JS; Roy RR; Edgerton VR; Talmadge RJ J Appl Physiol (1985); 2004 Feb; 96(2):584-96. PubMed ID: 14565962 [TBL] [Abstract][Full Text] [Related]
16. Single muscle fiber enzyme shifts with hindlimb suspension and immobilization. Fitts RH; Brimmer CJ; Heywood-Cooksey A; Timmerman RJ Am J Physiol; 1989 May; 256(5 Pt 1):C1082-91. PubMed ID: 2719097 [TBL] [Abstract][Full Text] [Related]
17. Effect of exercise on muscle fibre composition and enzyme activities of skeletal muscles in young rats. Melichna J; Macková EV; Semiginovský B; Tolar M; Stichová J; Slavícek A; Vanková S; Bartůnĕk Z Physiol Bohemoslov; 1987; 36(4):321-8. PubMed ID: 2958891 [TBL] [Abstract][Full Text] [Related]
18. Role of the lactate transporter (MCT1) in skeletal muscles. McCullagh KJ; Poole RC; Halestrap AP; O'Brien M; Bonen A Am J Physiol; 1996 Jul; 271(1 Pt 1):E143-50. PubMed ID: 8760092 [TBL] [Abstract][Full Text] [Related]
19. Relationships between muscle membrane lipids, fiber type, and enzyme activities in sedentary and exercised rats. Kriketos AD; Pan DA; Sutton JR; Hoh JF; Baur LA; Cooney GJ; Jenkins AB; Storlien LH Am J Physiol; 1995 Nov; 269(5 Pt 2):R1154-62. PubMed ID: 7503305 [TBL] [Abstract][Full Text] [Related]
20. Regulation of concentrations of glycolytic enzymes and creatine-phosphate kinase in "fast-twitch" and "slow-twitch" skeletal muscles of the chicken. Lebherz HG; Petell JK; Shackelford JE; Sardo MJ Arch Biochem Biophys; 1982 Apr; 214(2):642-56. PubMed ID: 7092212 [No Abstract] [Full Text] [Related] [Next] [New Search]