These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 6320769)

  • 1. Inability of various immune mechanisms to establish in vitro latent infection in sensory neurons infected by HSV-1. Brief report.
    Ziegler RJ; Pozos RS
    Arch Virol; 1984; 79(1-2):123-30. PubMed ID: 6320769
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the in vitro-reactivation of latent herpes simplex virus infection in spinal ganglia: comparison of various immune factors. Brief report.
    von Rheinbaben F; Schneweis KE
    Arch Virol; 1986; 87(3-4):315-9. PubMed ID: 2418807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery from lethal herpes simplex virus type 1 infection is mediated by cytotoxic T lymphocytes.
    Larsen HS; Russell RG; Rouse BT
    Infect Immun; 1983 Jul; 41(1):197-204. PubMed ID: 6305838
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monoclonal Antibodies, Derived from Humans Vaccinated with the RV144 HIV Vaccine Containing the HVEM Binding Domain of Herpes Simplex Virus (HSV) Glycoprotein D, Neutralize HSV Infection, Mediate Antibody-Dependent Cellular Cytotoxicity, and Protect Mice from Ocular Challenge with HSV-1.
    Wang K; Tomaras GD; Jegaskanda S; Moody MA; Liao HX; Goodman KN; Berman PW; Rerks-Ngarm S; Pitisuttithum P; Nitayapan S; Kaewkungwal J; Haynes BF; Cohen JI
    J Virol; 2017 Oct; 91(19):. PubMed ID: 28701403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Establishment of latent herpes simplex virus type 1 infection in resistant, sensitive, and immunodeficient mouse strains.
    Ellison AR; Yang L; Voytek C; Margolis TP
    Virology; 2000 Mar; 268(1):17-28. PubMed ID: 10683323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protection of neonatal mice against herpes simplex virus infection: probable in vivo antibody-dependent cellular cytotoxicity.
    Kohl S; Loo LS
    J Immunol; 1982 Jul; 129(1):370-6. PubMed ID: 6282968
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective effects of rat splenic lymphocytes and peritoneal exudate cells on herpes simplex virus infection of rat dorsal root ganglia in culture.
    Hartmann MA; Ziegler RJ
    J Neuropathol Exp Neurol; 1979 Mar; 38(2):165-76. PubMed ID: 233531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of herpes simplex virus infection on murine antibody-dependent cellular cytotoxicity and natural killer cytotoxicity.
    Kohl S; Lawman MJ; Rouse BT; Cahall DL
    Infect Immun; 1981 Feb; 31(2):704-11. PubMed ID: 6260674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute and latent infection of sensory ganglia with herpes simplex virus: immune control and virus reactivation.
    Openshaw H; Asher LV; Wohlenberg C; Sekizawa T; Notkins AL
    J Gen Virol; 1979 Jul; 44(1):205-15. PubMed ID: 227991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural killing of herpes simplex virus type 1-infected target cells: normal human responses and influence of antiviral antibody.
    Ching C; Lopez C
    Infect Immun; 1979 Oct; 26(1):49-56. PubMed ID: 227799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of antibody-dependent cellular cytotoxicity in neonatal infection with herpes simplex virus.
    Kohl S
    Rev Infect Dis; 1991; 13 Suppl 11():S950-2. PubMed ID: 1664132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural killer cytotoxicity and antibody-dependent cell cytotoxicity to herpes simplex virus-infected target cells in murine pregnancy.
    Loftin KC; Gonik B; Kumaran P
    Am J Reprod Immunol Microbiol; 1988 Jun; 17(2):53-6. PubMed ID: 2847568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lysis of herpes simplex virus-infected cells early in the infectious cycle by human antiviral antibody and complement.
    Cromeans TL; Shore SL
    Infect Immun; 1981 Mar; 31(3):1054-61. PubMed ID: 6262246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Herpes simplex virus type 1 infection in mice with severe combined immunodeficiency (SCID).
    Minagawa H; Sakuma S; Mohri S; Mori R; Watanabe T
    Arch Virol; 1988; 103(1-2):73-82. PubMed ID: 2850780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of acute and latent herpes simplex virus infection in C57BL/6 mice by adoptive transfer of immune lymphocytes with cytolytic activity.
    Bonneau RH; Jennings SR
    J Virol; 1989 Mar; 63(3):1480-4. PubMed ID: 2536848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Herpes simplex virus latency and reactivation in isolated rat sensory neurons.
    Wigdahl BL; Ziegler RJ; Sneve M; Rapp F
    Virology; 1983 May; 127(1):159-67. PubMed ID: 6305013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The continuing problem of herpes simplex virus persistence.
    Rajcáni J; Szántó J
    Acta Virol; 1983 Sep; 27(5):442-50. PubMed ID: 6139950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Persistence of herpes simplex virus type 1 in rat neurotumor cells.
    Doller E; Aucker J; Weissbach A
    J Virol; 1979 Jan; 29(1):43-50. PubMed ID: 219234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human natural killer cells limit replication of herpes simplex virus type 1 in vitro.
    Fitzgerald PA; Mendelsohn M; Lopez C
    J Immunol; 1985 Apr; 134(4):2666-72. PubMed ID: 2982949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of recognition of herpes simplex virus type 1-infected cells by natural killer cells.
    López-Guerrero JA; Alarcón B; Fresno M
    J Gen Virol; 1988 Nov; 69 ( Pt 11)():2859-68. PubMed ID: 2846762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.