These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 6320866)
1. Influence of metal ions on the phase properties of phosphatidic acid in combination with natural and synthetic phosphatidylcholines: an X-ray diffraction study using synchrotron radiation. Caffrey M; Feigenson GW Biochemistry; 1984 Jan; 23(2):323-31. PubMed ID: 6320866 [TBL] [Abstract][Full Text] [Related]
2. Characterization of complexes formed in fully hydrated dispersions of dipalmitoyl derivatives of phosphatidylcholine and diacylglycerol. Quinn PJ; Takahashi H; Hatta I Biophys J; 1995 Apr; 68(4):1374-82. PubMed ID: 7787023 [TBL] [Abstract][Full Text] [Related]
3. Influence of the calcium-induced gel phase on the behavior of small molecules in phosphatidylserine and phosphatidylserine-phosphatidylcholine multilamellar vesicles. Florine KI; Feigenson GW Biochemistry; 1987 Mar; 26(6):1757-68. PubMed ID: 3036210 [TBL] [Abstract][Full Text] [Related]
4. Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Mustonen P; Virtanen JA; Somerharju PJ; Kinnunen PK Biochemistry; 1987 Jun; 26(11):2991-7. PubMed ID: 3038173 [TBL] [Abstract][Full Text] [Related]
5. Hydrocarbon chains dominate coupling and phase coexistence in bilayers of natural phosphatidylcholines and sphingomyelins. Quinn PJ; Wolf C Biochim Biophys Acta; 2009 May; 1788(5):1126-37. PubMed ID: 19150608 [TBL] [Abstract][Full Text] [Related]
6. Structure and thermotropic properties of 1-stearoyl-2-acetyl-phosphatidylcholine bilayer membranes. Shah J; Duclos RI; Shipley GG Biophys J; 1994 May; 66(5):1469-78. PubMed ID: 8061196 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of mixing of dipalmitoyl phosphatidylcholine and egg phosphatidylcholine in hydrated bilayers. Tinker DO; Low R Can J Biochem; 1982 May; 60(5):538-48. PubMed ID: 6896670 [TBL] [Abstract][Full Text] [Related]
8. Influence of phospholipid peroxidation on the phase behavior of phosphatidylcholine and phosphatidylethanolamine in aqueous dispersions. van Duijn G; Verkleij AJ; de Kruijff B Biochemistry; 1984 Oct; 23(21):4969-77. PubMed ID: 6498171 [TBL] [Abstract][Full Text] [Related]
9. Modulation of bovine milk galactosyltransferase activity by lipids. Mitranic MM; Boggs JM; Moscarello MA J Biol Chem; 1983 Jul; 258(14):8630-6. PubMed ID: 6408092 [TBL] [Abstract][Full Text] [Related]
10. Physical properties of phosphatidylcholine-phosphatidylinositol liposomes in relation to a calcium effect. Ohki K; Sekiya T; Yamauchi T; Nozawa Y Biochim Biophys Acta; 1981 Jun; 644(2):165-74. PubMed ID: 6266466 [TBL] [Abstract][Full Text] [Related]
11. The structural diversity of DNA-neutral phospholipids-divalent metal cations aggregates: a small-angle synchrotron X-ray diffraction study. Uhríková D; Lengyel A; Hanulová M; Funari SS; Balgavý P Eur Biophys J; 2007 Apr; 36(4-5):363-75. PubMed ID: 16865363 [TBL] [Abstract][Full Text] [Related]
12. Interaction of cholesterol with galactocerebroside and galactocerebroside-phosphatidylcholine bilayer membranes. Ruocco MJ; Shipley GG Biophys J; 1984 Dec; 46(6):695-707. PubMed ID: 6518252 [TBL] [Abstract][Full Text] [Related]
13. Dynamic properties of the haptenic site of lipid haptens in phosphatidylcholine membranes. Their relation to the phase transition of the host lattice. Takeshita K; Utsumi H; Hamada A Biophys J; 1987 Aug; 52(2):187-97. PubMed ID: 2822160 [TBL] [Abstract][Full Text] [Related]
14. Decreased lipid order induced by microsomal cytochrome P-450 and NADPH-cytochrome P-450 reductase in model membranes: fluorescence and electron spin resonance studies. Kunz BC; Rehorek M; Hauser H; Winterhalter KH; Richter C Biochemistry; 1985 Jun; 24(12):2889-95. PubMed ID: 2990535 [TBL] [Abstract][Full Text] [Related]
15. The effect of gentamicin on the biophysical properties of phosphatidic acid liposomes is influenced by the O-C = O group of the lipid. Ramsammy LS; Kaloyanides GJ Biochemistry; 1988 Oct; 27(21):8249-54. PubMed ID: 3233208 [TBL] [Abstract][Full Text] [Related]
16. The role of sphingomyelin in regulating phase coexistence in complex lipid model membranes: competition between ceramide and cholesterol. Staneva G; Chachaty C; Wolf C; Koumanov K; Quinn PJ Biochim Biophys Acta; 2008 Dec; 1778(12):2727-39. PubMed ID: 18722999 [TBL] [Abstract][Full Text] [Related]
17. Kinetics of phosphatidylcholine and lysophosphatidylcholine exchange between unilamellar vesicles. McLean LR; Phillips MC Biochemistry; 1984 Sep; 23(20):4624-30. PubMed ID: 6498159 [TBL] [Abstract][Full Text] [Related]
18. Molecular motion and order in oriented lipid multibilayer membranes evaluated by simulations of spin label ESR spectra. Effects of temperature, cholesterol and magnetic field. Shimoyama Y; Eriksson LE; Ehrenberg A Biochim Biophys Acta; 1978 Apr; 508(2):213-35. PubMed ID: 205243 [TBL] [Abstract][Full Text] [Related]
19. Phosphatidylcholine-fatty acid membranes. I. Effects of protonation, salt concentration, temperature and chain-length on the colloidal and phase properties of mixed vesicles, bilayers and nonlamellar structures. Cevc G; Seddon JM; Hartung R; Eggert W Biochim Biophys Acta; 1988 May; 940(2):219-40. PubMed ID: 2835979 [TBL] [Abstract][Full Text] [Related]
20. Raman spectroscopic studies of dimyristoylphosphatidic acid and its interactions with ferricytochrome c in cationic binary and ternary lipid-protein complexes. Vincent JS; Levin IW Biophys J; 1991 May; 59(5):1007-21. PubMed ID: 1651120 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]