These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 6320873)
1. Changes in thermal phase transition of various membranes during temperature acclimation in Tetrahymena. Nakayama H; Ohki K; Mitsui T; Nozawa Y Biochim Biophys Acta; 1984 Jan; 769(2):311-6. PubMed ID: 6320873 [TBL] [Abstract][Full Text] [Related]
2. An X-ray diffraction study on phase transition temperatures of various membranes isolated from Tetrahymena pyriformis cells grown at different temperatures. Nakayama H; Goto M; Ohki K; Mitsui T; Nozawa Y Biochim Biophys Acta; 1983 Apr; 730(1):17-24. PubMed ID: 6403032 [TBL] [Abstract][Full Text] [Related]
3. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. Role of cardiolipin in fluidity of mitochondrial membranes. Yamauchi T; Ohki K; Maruyama H; Nozawa Y Biochim Biophys Acta; 1981 Dec; 649(2):385-92. PubMed ID: 6797472 [TBL] [Abstract][Full Text] [Related]
4. Thermal adaptation of Tetrahymena membranes with special reference to mitochondria. II. Preferential interaction of cardiolipin with specific molecular species of phospholipid. Ohki K; Goto M; Nozawa Y Biochim Biophys Acta; 1984 Feb; 769(3):563-70. PubMed ID: 6421321 [TBL] [Abstract][Full Text] [Related]
5. Studies on thermal adaptation in Tetrahymena membrane lipids. Modification of positional distribution of phospholipid acyl chains in plasma membranes, mitochondria and microsomes. Maruyama H; Banno Y; Watanabe T; Nozawa Y Biochim Biophys Acta; 1982 May; 711(2):229-44. PubMed ID: 6807352 [TBL] [Abstract][Full Text] [Related]
6. Rapid membrane response during low-temperature acclimation. Correlation of early changes in the physical properties and lipid composition of Tetrahymena microsomal membranes. Dickens BF; Thompson GA Biochim Biophys Acta; 1981 Jun; 644(2):211-8. PubMed ID: 6789874 [TBL] [Abstract][Full Text] [Related]
7. Temperature-dependent changes in the swimming behaviour of Tetrahymena pyriformis-NT1 and their interrelationships with electrophysiology and the state of membrane lipids. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):303-10. PubMed ID: 2864172 [TBL] [Abstract][Full Text] [Related]
8. Age-dependent modifications in membrane lipids: lipid composition, fluidity and palmitoyl-CoA desaturase in Tetrahymena membranes. Nozawa Y; Kasai R; Kameyama Y; Ohki K Biochim Biophys Acta; 1980 Jun; 599(1):232-45. PubMed ID: 6104984 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of thermal adaptation of membrane lipids in Tetrahymena pyriformis NT-1. Possible evidence for temperature-mediated induction of palmitoyl-CoA desaturase. Nozawa Y; Kasai R Biochim Biophys Acta; 1978 Apr; 529(1):54-66. PubMed ID: 416850 [TBL] [Abstract][Full Text] [Related]
11. Use of fluorescence polarization to monitor intracellular membrane changes during temperature acclimation. Correlation with lipid compositional and ultrastructural changes. Martin CE; Thompson GA Biochemistry; 1978 Aug; 17(17):3581-6. PubMed ID: 99167 [TBL] [Abstract][Full Text] [Related]
12. Correlation between fluidity and fatty acid composition of phospholipid species in Tetrahymena pyriformis during temperature acclimation. Ohki K; Kasai R; Nozawa Y Biochim Biophys Acta; 1979 Dec; 558(3):273-81. PubMed ID: 228721 [TBL] [Abstract][Full Text] [Related]
13. Phospholipid molecular species alterations in Tetrahymena ciliary membranes following low-temperature acclimation. Ramesha CS; Dickens BF; Thompson GA Biochemistry; 1982 Jul; 21(15):3618-22. PubMed ID: 6810928 [TBL] [Abstract][Full Text] [Related]
14. Temperature-induced vertical shift of proteins in membranes. Funk J; Wunderlich F; Kreutz W J Mol Biol; 1982 Nov; 161(4):561-77. PubMed ID: 6818355 [TBL] [Abstract][Full Text] [Related]
15. Discontinuous thermotropic response of Tetrahymena membrane lipids correlated with specific lipid compositional changes. Dickens BF; Martin CE; King GP; Turner JS; Thompson GA Biochim Biophys Acta; 1980 May; 598(2):217-36. PubMed ID: 6769483 [TBL] [Abstract][Full Text] [Related]
16. Phospholipid molecular species alterations in microsomal membranes as an initial key step during cellular acclimation to low temperature. Dickens BF; Thompson GA Biochemistry; 1982 Jul; 21(15):3604-11. PubMed ID: 6810926 [No Abstract] [Full Text] [Related]
17. Changes in lipid fluidity and fatty acid composition with altered culture temperature in Tetrahymena pyriformis-NT1. Connolly JG; Brown ID; Lee AG; Kerkut GA Comp Biochem Physiol A Comp Physiol; 1985; 81(2):287-92. PubMed ID: 2864170 [TBL] [Abstract][Full Text] [Related]
18. Molecular control of membrane properties during temperature acclimation. Fatty acid desaturase regulation of membrane fluidity in acclimating Tetrahymena cells. Martin CE; Hiramitsu K; Kitajima Y; Nozawa Y; Skriver L; Thompson GA Biochemistry; 1976 Nov; 15(24):5218-27. PubMed ID: 826266 [TBL] [Abstract][Full Text] [Related]
19. Thermally induced heterogeneity in microsomal membranes of fatty acid-supplemented Tetrahymena: lipid composition, fluidity and enzyme activity. Kameyama Y; Ohki K; Nozawa Y J Biochem; 1980 Nov; 88(5):1291-303. PubMed ID: 6780538 [TBL] [Abstract][Full Text] [Related]
20. Changes in the lipid composition and physical properties of Tetrahymena ciliary membranes following low-temperature acclimation. Ramesha CS; Thompson GA Biochemistry; 1982 Jul; 21(15):3612-7. PubMed ID: 6810927 [No Abstract] [Full Text] [Related] [Next] [New Search]