These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 6320965)

  • 21. Activation of neurons in the gracile nucleus by two afferent pathways in the rat.
    Tomasulo KC; Emmers R
    Exp Neurol; 1972 Jul; 36(1):197-206. PubMed ID: 5046881
    [No Abstract]   [Full Text] [Related]  

  • 22. Characteristics of spinoreticular and spinothalamic neurons with renal input.
    Ammons WS
    J Neurophysiol; 1987 Sep; 58(3):480-95. PubMed ID: 3655878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Blood pressure responses to afferent stimulation of the splanchnic nerve of the rabbit and their reversal by change of stimulation frequency].
    Siegelova J; Franc Z
    C R Seances Soc Biol Fil; 1971 Jun; 165(11):2058-60. PubMed ID: 4262901
    [No Abstract]   [Full Text] [Related]  

  • 24. Somatic and visceral inputs to the thoracic spinal cord of the cat: effects of noxious stimulation of the biliary system.
    Cervero F
    J Physiol; 1983 Apr; 337():51-67. PubMed ID: 6875945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn.
    Price DD; Hayashi H; Dubner R; Ruda MA
    J Neurophysiol; 1979 Nov; 42(6):1590-1608. PubMed ID: 228014
    [No Abstract]   [Full Text] [Related]  

  • 26. Somatosensory representation in the vestibulocerebellum.
    Schwarz DW; Milne AC
    Brain Res; 1976 Jan; 102(1):181-4. PubMed ID: 1247877
    [No Abstract]   [Full Text] [Related]  

  • 27. Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLc) thalamic nucleus: possible mechanisms.
    Gerhart KD; Yezierski RP; Fang ZR; Willis WD
    J Neurophysiol; 1983 Feb; 49(2):406-23. PubMed ID: 6834084
    [No Abstract]   [Full Text] [Related]  

  • 28. Presynaptic depolarization of terminals of rubrospinal tract fibers in intermediate nucleus of cat spinal cord.
    Rudomín P; Jankowska E
    J Neurophysiol; 1981 Sep; 46(3):517-31. PubMed ID: 6271929
    [No Abstract]   [Full Text] [Related]  

  • 29. Afferent inhibition in the cuneate nucleus of the rhesus monkey.
    Biedenbach MA; Jabbur SJ; Towe AL
    Brain Res; 1971 Mar; 27(1):179-83. PubMed ID: 4995087
    [No Abstract]   [Full Text] [Related]  

  • 30. Spinothalamic tract neurons that project to medial and/or lateral thalamic nuclei: evidence for a physiologically novel population of spinal cord neurons.
    Giesler GJ; Yezierski RP; Gerhart KD; Willis WD
    J Neurophysiol; 1981 Dec; 46(6):1285-308. PubMed ID: 7320746
    [No Abstract]   [Full Text] [Related]  

  • 31. [Comparative characteristics of electric responses of sympathetic efferent neurons to centrifugal and centripetal influences].
    Bulygin IA; Soklovskiĭ OE
    Fiziol Zh SSSR Im I M Sechenova; 1969 Apr; 55(4):445-53. PubMed ID: 5395150
    [No Abstract]   [Full Text] [Related]  

  • 32. [The reactions of spontaneously active neurons of the midbrain reticular formation to afferent activity].
    Chuvin BT
    Biull Eksp Biol Med; 1973 May; 75(5):8-11. PubMed ID: 4778699
    [No Abstract]   [Full Text] [Related]  

  • 33. Analysis of field potentials elicited in the dorsal column nuclei by splanchnic nerve A-beta afferents.
    Rigamonti DD; Hancock MB
    Brain Res; 1974 Sep; 77(2):326-9. PubMed ID: 4850566
    [No Abstract]   [Full Text] [Related]  

  • 34. An electrical investigation of the efferent pathways from the vestibular nuclei.
    Cook WA; Cangiano A; Pompeiano O
    Arch Ital Biol; 1969 Aug; 107(3):235-74. PubMed ID: 4311358
    [No Abstract]   [Full Text] [Related]  

  • 35. Viscerosomatic interactions in lumbar spinal cord of the cat.
    Hancock MB; Willis WD; Harrison F
    J Neurophysiol; 1970 Jan; 33(1):46-58. PubMed ID: 5411515
    [No Abstract]   [Full Text] [Related]  

  • 36. Spinothalamic lumbosacral lamina I cells responsive to skin and muscle stimulation in the cat.
    Craig AD; Kniffki KD
    J Physiol; 1985 Aug; 365():197-221. PubMed ID: 4032311
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of primate spinothalamic tract neurons receiving viscerosomatic convergent inputs in T3-T5 segments.
    Blair RW; Weber RN; Foreman RD
    J Neurophysiol; 1981 Oct; 46(4):797-811. PubMed ID: 7288465
    [No Abstract]   [Full Text] [Related]  

  • 38. [Comparative electrophysiological study of the hypothalamic projection of the afferent systems of the splanchnic and sciatic nerves].
    Baklavadzhian OG; Astvatsatrian EG
    Fiziol Zh SSSR Im I M Sechenova; 1973 Sep; 59(9):1326-36. PubMed ID: 4789705
    [No Abstract]   [Full Text] [Related]  

  • 39. Response properties of upper cervical spinothalamic neurons in cats. A possible explanation for the unusual sensory symptoms associated with upper cervical lesions in humans.
    Smith MV; Hodge CJ
    Spine (Phila Pa 1976); 1992 Oct; 17(10 Suppl):S375-82. PubMed ID: 1332195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Projections of the slow-conducting myelinated fibers of the splanchnic nerve on the motor cortex of the cat.
    Bystrzycka E; Korn H
    Brain Res; 1969 Jan; 12(1):253-6. PubMed ID: 4308402
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.