BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 6321237)

  • 1. Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals.
    Gutteridge JM; Quinlan GJ; Wilkins S
    FEBS Lett; 1984 Feb; 167(1):37-41. PubMed ID: 6321237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Streptonigrin-induced deoxyribose degradation: inhibition by superoxide dismutase, hydroxyl radical scavengers and iron chelators.
    Gutteridge JM
    Biochem Pharmacol; 1984 Oct; 33(19):3059-62. PubMed ID: 6091667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radical production from hydrogen peroxide and enzymatically generated paraquat radicals: catalytic requirements and oxygen dependence.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1984 Nov; 235(1):116-26. PubMed ID: 6093705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Free radical damage to deoxyribose by anthracycline, aureolic acid and aminoquinone antitumour antibiotics. An essential requirement for iron, semiquinones and hydrogen peroxide.
    Gutteridge JM; Quinlan GJ
    Biochem Pharmacol; 1985 Dec; 34(23):4099-103. PubMed ID: 2998399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deoxyribose breakdown by the adriamycin semiquinone and H2O2: evidence for hydroxyl radical participation.
    Bates DA; Winterbourn CC
    FEBS Lett; 1982 Aug; 145(1):137-42. PubMed ID: 6897044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superoxide dismutase and Fenton chemistry. Reaction of ferric-EDTA complex and ferric-bipyridyl complex with hydrogen peroxide without the apparent formation of iron(II).
    Gutteridge JM; Maidt L; Poyer L
    Biochem J; 1990 Jul; 269(1):169-74. PubMed ID: 2165392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of hydrogen peroxide and hydroxyl radical formation in the killing of Ehrlich tumor cells by anticancer quinones.
    Doroshow JH
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4514-8. PubMed ID: 3086887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cobalt(II) ion as a promoter of hydroxyl radical and possible 'crypto-hydroxyl' radical formation under physiological conditions. Differential effects of hydroxyl radical scavengers.
    Moorhouse CP; Halliwell B; Grootveld M; Gutteridge JM
    Biochim Biophys Acta; 1985 Dec; 843(3):261-8. PubMed ID: 2998477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of superoxide and hydroxyl radicals in phospholipid peroxidation catalysed by iron salts.
    Gutteridge JM
    FEBS Lett; 1982 Dec; 150(2):454-8. PubMed ID: 6297981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the superoxide and hydroxyl radicals in the degradation of DNA and deoxyribose induced by a copper-phenanthroline complex.
    Gutteridge JM; Halliwell B
    Biochem Pharmacol; 1982 Sep; 31(17):2801-5. PubMed ID: 6291545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intermediates in the aerobic autoxidation of 6-hydroxydopamine: relative importance under different reaction conditions.
    Gee P; Davison AJ
    Free Radic Biol Med; 1989; 6(3):271-84. PubMed ID: 2545550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides.
    Gutteridge JM
    FEBS Lett; 1986 Jun; 201(2):291-5. PubMed ID: 2423372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalysis of the Haber-Weiss reaction by iron-diethylenetriaminepentaacetate.
    Egan TJ; Barthakur SR; Aisen P
    J Inorg Biochem; 1992 Dec; 48(4):241-9. PubMed ID: 1336036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthine oxidase-induced injury to endothelium: role of intracellular iron and hydroxyl radical.
    Kvietys PR; Inauen W; Bacon BR; Grisham MB
    Am J Physiol; 1989 Nov; 257(5 Pt 2):H1640-6. PubMed ID: 2556049
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of the semiquinone free radicals of anti-tumour agents with oxygen and iron complexes.
    Butler J; Hoey BM; Swallow AJ
    FEBS Lett; 1985 Mar; 182(1):95-8. PubMed ID: 3918891
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Xanthine oxidase induced depolymerization of hyaluronic acid in the presence of ferritin.
    Carlin G; Djursäter R
    FEBS Lett; 1984 Nov; 177(1):27-30. PubMed ID: 6094241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of the iron-catalysed formation of hydroxyl radicals by nitrosouracil derivatives: protection of mitochondrial membranes against lipid peroxidation.
    Rabion A; Verlhac JB; Fraisse L; Roche B; Seris JL
    Free Radic Res Commun; 1993; 19(6):409-23. PubMed ID: 8168730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide dismutase inhibits the superoxide-driven Fenton reaction at two different levels. Implications for a wider protective role.
    Gutteridge JM
    FEBS Lett; 1985 Jun; 185(1):19-23. PubMed ID: 2987038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper + zinc and manganese superoxide dismutases inhibit deoxyribose degradation by the superoxide-driven Fenton reaction at two different stages. Implications for the redox states of copper and manganese.
    Gutteridge JM; Bannister JV
    Biochem J; 1986 Feb; 234(1):225-8. PubMed ID: 3010953
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals.
    Halliwell B; Gutteridge JM
    FEBS Lett; 1981 Jun; 128(2):347-52. PubMed ID: 6266877
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.