BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 6321237)

  • 21. Angiotensin converting enzyme inhibitors as oxygen free radical scavengers.
    Mira ML; Silva MM; Queiroz MJ; Manso CF
    Free Radic Res Commun; 1993; 19(3):173-81. PubMed ID: 8244086
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Factors that influence the deoxyribose oxidation assay for Fenton reaction products.
    Winterbourn CC
    Free Radic Biol Med; 1991; 11(4):353-60. PubMed ID: 1665835
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deoxyribose degradation catalyzed by Fe(III)-EDTA: kinetic aspects and potential usefulness for submicromolar iron measurements.
    Hermes-Lima M; Wang EM; Schulman HM; Storey KB; Ponka P
    Mol Cell Biochem; 1994 Aug; 137(1):65-73. PubMed ID: 7845380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hydroxyl radical generation by the tetracycline antibiotics with free radical damage to DNA, lipids and carbohydrate in the presence of iron and copper salts.
    Quinlan GJ; Gutteridge JM
    Free Radic Biol Med; 1988; 5(5-6):341-8. PubMed ID: 2855734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inhibition of the Fenton reaction by the protein caeruloplasmin and other copper complexes. Assessment of ferroxidase and radical scavenging activities.
    Gutteridge JM
    Chem Biol Interact; 1985 Dec; 56(1):113-20. PubMed ID: 3000633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Iron and xanthine oxidase catalyze formation of an oxidant species distinguishable from OH.: comparison with the Haber-Weiss reaction.
    Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1986 Jan; 244(1):27-34. PubMed ID: 3004338
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of free radicals produced during the metabolism of mitomycin C in Escherichia coli inactivation.
    Schiavano GF; Brandi G; Salvaggio L; Cattabeni FC; Cantoni O
    Xenobiotica; 1990 May; 20(5):549-54. PubMed ID: 2161589
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Induction of free radicals and tumors in the kidneys of Wistar rats by ferric ethylenediamine-N,N'-diacetate.
    Liu M; Okada S
    Carcinogenesis; 1994 Dec; 15(12):2817-21. PubMed ID: 8001240
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparative sugar degradation by (OH). produced by the iron-driven Fenton reaction and gamma radiolysis.
    Franzini E; Sellak H; Hakim J; Pasquier C
    Arch Biochem Biophys; 1994 Mar; 309(2):261-5. PubMed ID: 8135536
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radical-driven Fenton reactions: studies with paraquat, adriamycin, and anthraquinone 6-sulfonate and citrate, ATP, ADP, and pyrophosphate iron chelates.
    Vile GF; Winterbourn CC; Sutton HC
    Arch Biochem Biophys; 1987 Dec; 259(2):616-26. PubMed ID: 2827582
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bleomycin-iron damage to DNA with formation of 8-hydroxydeoxyguanosine and base propenals. Indications that xanthine oxidase generates superoxide from DNA degradation products.
    Gutteridge JM; West M; Eneff K; Floyd RA
    Free Radic Res Commun; 1990; 10(3):159-65. PubMed ID: 1697821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Redox cycling of potential antitumor aziridinyl quinones.
    Lusthof KJ; de Mol NJ; Richter W; Janssen LH; Butler J; Hoey BM; Verboom W; Reinhoudt DN
    Free Radic Biol Med; 1992 Dec; 13(6):599-608. PubMed ID: 1334033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals.
    Henderson WR; Klebanoff SJ
    Biochem Biophys Res Commun; 1983 Jan; 110(1):266-72. PubMed ID: 6301443
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of porphyrins on iron-catalysed generation of hydroxyl radicals.
    Van Steveninck J; Boegheim JP; Dubbelman TM; Van der Zee J
    Biochem J; 1988 Feb; 250(1):197-201. PubMed ID: 2833235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of pH on OH. scavenger inhibition of damage to deoxyribose by Fenton reaction.
    Tadolini B; Cabrini L
    Mol Cell Biochem; 1990 May; 94(2):97-104. PubMed ID: 2165214
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An electron paramagnetic resonance study of the interactions between the adriamycin semiquinone, hydrogen peroxide, iron-chelators, and radical scavengers.
    Kalyanaraman B; Morehouse KM; Mason RP
    Arch Biochem Biophys; 1991 Apr; 286(1):164-70. PubMed ID: 1654778
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Free-radical formation by mitomycin C and its novel analogs in cardiac microsomes and the perfused rat heart.
    Politi PM; Rajagopalan S; Sinha BK
    Biochim Biophys Acta; 1989 Sep; 992(3):341-8. PubMed ID: 2550081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chemiluminescence from acetaldehyde oxidation by xanthine oxidase involves generation of and interactions with hydroxyl radicals.
    Puntarulo S; Cederbaum AI
    Alcohol Clin Exp Res; 1989 Feb; 13(1):84-90. PubMed ID: 2538093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Doxorubicin-dependent lipid peroxidation at low partial pressures of O2.
    Winterbourn CC; Gutteridge JM; Halliwell B
    J Free Radic Biol Med; 1985; 1(1):43-9. PubMed ID: 3939136
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vanadyl causes hydroxyl radical mediated degradation of deoxyribose.
    Liochev S; Ivancheva E
    Free Radic Res Commun; 1991; 14(5-6):335-42. PubMed ID: 1663905
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.