BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 632162)

  • 1. Regrowth of atrophied skeletal muscle in adult rats after ending immobilization.
    Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1978 Feb; 44(2):225-30. PubMed ID: 632162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Time course of muscular atrophy during immobilization of hindlimbs in rats.
    Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1977 Oct; 43(4):656-61. PubMed ID: 198396
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Histochemical study on the changes in muscle fibers in relation to the effects of aging on recovery from muscular atrophy caused by disuse in rats.
    Tanaka T; Kariya Y; Hoshino Y
    J Orthop Sci; 2004; 9(1):76-85. PubMed ID: 14767708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle IGF-binding protein-3 and -5 expressions are age, muscle, and load dependent.
    Spangenburg EE; Abraha T; Childs TE; Pattison JS; Booth FW
    Am J Physiol Endocrinol Metab; 2003 Feb; 284(2):E340-50. PubMed ID: 12397024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein synthesis rates in atrophied gastrocnemius muscles after limb immobilization.
    Tucker KR; Seider MJ; Booth FW
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Jul; 51(1):73-7. PubMed ID: 7263427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Responsiveness of cell signaling pathways during the failed 15-day regrowth of aged skeletal muscle.
    Morris RT; Spangenburg EE; Booth FW
    J Appl Physiol (1985); 2004 Jan; 96(1):398-404. PubMed ID: 14514701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of testosterone propionate on hindlimb-immobilized rats.
    Evans WJ; Ivy JL
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1643-47. PubMed ID: 7107474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activity of some enzymes of the energy-supplying metabolism in the rat soleus after tenotomy of synergistic muscles and in the contralateral "control" muscle.
    Bass A; Macková E; Vítek V
    Physiol Bohemoslov; 1973; 22(6):613-21. PubMed ID: 4273070
    [No Abstract]   [Full Text] [Related]  

  • 9. Effects of denervation and deafferentation on mass and enzyme activity in rat skeletal muscles.
    Ohira Y
    Jpn J Physiol; 1989; 39(1):21-31. PubMed ID: 2724667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Time course of the T3- and T4-induced increase in rat soleus muscle mitochondria.
    Winder WW
    Am J Physiol; 1979 Mar; 236(3):C132-8. PubMed ID: 218461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of suspension hypokinesia/hypodynamia on rat skeletal muscle.
    Flynn DE; Max SR
    Aviat Space Environ Med; 1985 Nov; 56(11):1065-9. PubMed ID: 4074258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selected Contribution: Identification of differentially expressed genes between young and old rat soleus muscle during recovery from immobilization-induced atrophy.
    Pattison JS; Folk LC; Madsen RW; Booth FW
    J Appl Physiol (1985); 2003 Nov; 95(5):2171-9. PubMed ID: 12897032
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hindlimb casting decreases muscle mass in part by proteasome-dependent proteolysis but independent of protein synthesis.
    Krawiec BJ; Frost RA; Vary TC; Jefferson LS; Lang CH
    Am J Physiol Endocrinol Metab; 2005 Dec; 289(6):E969-80. PubMed ID: 16046454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Muscle atrophy continues after early cast removal following tendon repair.
    Maxwell LC; Moody MR; Enwemeka CS
    Anat Rec; 1992 Jul; 233(3):376-86. PubMed ID: 1609970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of spontaneous recovery or retraining after hindlimb suspension on aerobic capacity.
    Desplanches D; Mayet MH; Semporé B; Frutoso J; Flandrois R
    J Appl Physiol (1985); 1987 Nov; 63(5):1739-43. PubMed ID: 3693209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Citrate synthase activity in human skeletal muscle.
    Haralambie G
    Enzyme; 1977; 22(5):330-5. PubMed ID: 891512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of skeletal muscle after 3 mo of hindlimb immobilization in rats.
    Booth FW; Seider MJ
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Aug; 47(2):435-9. PubMed ID: 468702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of early low-intensity exercise on rat hind-limb muscles following acute ischemic stroke.
    Choe MA; An GJ; Lee YK; Im JH; Choi-Kwon S; Heitkemper M
    Biol Res Nurs; 2006 Jan; 7(3):163-74. PubMed ID: 16552944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The worsening of tibialis anterior muscle atrophy during recovery post-immobilization correlates with enhanced connective tissue area, proteolysis, and apoptosis.
    Slimani L; Micol D; Amat J; Delcros G; Meunier B; Taillandier D; Polge C; Béchet D; Dardevet D; Picard B; Attaix D; Listrat A; Combaret L
    Am J Physiol Endocrinol Metab; 2012 Dec; 303(11):E1335-47. PubMed ID: 23032683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.