BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

347 related articles for article (PubMed ID: 6321949)

  • 1. The effects of alkylated xanthines on cyclic AMP accumulation in dog thyroid slices exposed to carbamylcholine.
    Miot F; Erneux C; Wells JN; Dumont JE
    Mol Pharmacol; 1984 Mar; 25(2):261-6. PubMed ID: 6321949
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of the phosphodiesterase regulated by muscarinic cholinergic receptors of 1321N1 human astrocytoma cells.
    Tanner LI; Harden TK; Wells JN; Martin MW
    Mol Pharmacol; 1986 May; 29(5):455-60. PubMed ID: 2422535
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative control of TSH action by iodide and acetylcholine: mechanism of action in intact thyroid cells.
    Van Sande J; Erneux C; Dumont JE
    J Cyclic Nucleotide Res; 1977 Oct; 3(5):335-45. PubMed ID: 201681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The escape of cyclic AMP from dog thyroid slices exposed to positive and negative regulators.
    Cochaux P; Van Sande J; Swillens S; Dumont JE
    J Cyclic Nucleotide Protein Phosphor Res; 1986; 11(2):75-85. PubMed ID: 2426318
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cyclic nucleotide hydrolysis in the thyroid gland. General properties and key role in the interrelations between concentrations of adenosine 3':5'-monophosphate and guanosine 3':5'-monophosphate.
    Erneux C; Van Sande J; Dumont JE; Boeynaems JM
    Eur J Biochem; 1977 Jan; 72(1):137-47. PubMed ID: 12974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of a calmodulin-dependent phosphodiesterase in the negative control of carbamylcholine on cyclic AMP levels in dog thyroid slices.
    Miot F; Dumont JE; Erneux C
    FEBS Lett; 1983 Jan; 151(2):273-6. PubMed ID: 6187601
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of carbamylcholine and ionophore A-23187 on cyclic 3',5'-AMP and cyclic 3',5'-GMP accumulation in dog-thyroid slices.
    van Sande J; Decoster C; Dumont JE
    Mol Cell Endocrinol; 1979 Apr; 14(1):45-57. PubMed ID: 222640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of cyclic nucleotide phosphodiesterase in the inhibition of cyclic AMP accumulation by carbachol and phosphatidate.
    Nemecek GM; Honeyman TW
    J Cyclic Nucleotide Res; 1982; 8(6):395-408. PubMed ID: 6193153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pharmacological inhibition of calmodulin-sensitive phosphodiesterases.
    Ilien B; Ruckstuhl M; Landry Y
    J Pharmacol; 1982; 13(2):307-16. PubMed ID: 6285085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 7-Bromo-1,5-dihydro-3,6-dimethylimidazo[2,1-b]quinazolin-2(3H)- one (Ro 15-2041), a potent antithrombotic agent that selectively inhibits platelet cyclic AMP-phosphodiesterase.
    Muggli R; Tschopp TB; Mittelholzer E; Baumgartner HR
    J Pharmacol Exp Ther; 1985 Oct; 235(1):212-9. PubMed ID: 2995647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple molecular forms of phosphodiesterase and the regulation of cardiac muscle contractility.
    Weishaar RE; Kobylarz-Singer DC; Quade MM; Steffen RP; Kaplan HR
    J Cyclic Nucleotide Protein Phosphor Res; 1986-1987; 11(7):513-27. PubMed ID: 2831259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of bradykinin stimulation of renal medullary prostaglandin E2 synthesis by phosphodiesterase inhibitors.
    Rapp NS; Zenser TV; Mattammal MB; Davis BB
    J Pharmacol Exp Ther; 1981 Nov; 219(2):442-6. PubMed ID: 6169824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscarinic cholinergic receptor-mediated control of cyclic AMP metabolism. Agonist-induced changes in nucleotide synthesis and degradation.
    Meeker RB; Harden TK
    Mol Pharmacol; 1983 Mar; 23(2):384-92. PubMed ID: 6300648
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of phosphodiesterase 4 in guinea-pig macrophages: multiple activities, association states and sensitivity to selective inhibitors.
    Kelly JJ; Barnes PJ; Giembycz MA
    Br J Pharmacol; 1998 May; 124(1):129-40. PubMed ID: 9630352
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cholinergic control of cyclic nucleotide metabolism in human thyroid cells.
    Brandi ML; Rotella CM; Tanini A; Toccafondi R; Aloj SM
    J Endocrinol Invest; 1987 Oct; 10(5):451-8. PubMed ID: 2828457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Release of norepinephrine and dopamine-beta-hydroxylase by nerve stimulation. IV. An evaluation of a role for cyclic adenosine monophosphate.
    Cubeddu L; Barnes E; Weiner N
    J Pharmacol Exp Ther; 1975 Apr; 193(1):105-27. PubMed ID: 166157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of cholinergic inhibition of dog thyroid secretion in vitro.
    Unger J; Ketelbant P; Erneux C; Mockel J; Dumont JE
    Endocrinology; 1984 Apr; 114(4):1266-71. PubMed ID: 6200315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tissue selective inhibition of cyclic nucleotide phosphodiesterase by denbufylline.
    Wilke R; Arch JR; Nicholson CD
    Arzneimittelforschung; 1989 Jun; 39(6):665-7. PubMed ID: 2476135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Negative regulation of cyclic-AMP levels by carbamylcholine in dog thyroid is not mediated by cyclic-GMP.
    Decoster C; Dumont JE
    Biochem Pharmacol; 1985 May; 34(9):1429-33. PubMed ID: 2986645
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of spasmogen-stimulated Ins(1,4,5)P3 generation and functional responses by selective inhibitors of types 3 and 4 phosphodiesterase in airways smooth muscle.
    Challiss RA; Adams D; Mistry R; Nicholson CD
    Br J Pharmacol; 1998 May; 124(1):47-54. PubMed ID: 9630342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.