These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 632229)

  • 41. Enzymatic Glucosylation of Salidroside from Starch by α-Amylase.
    Wang K; Qi T; Guo L; Ma Z; Gu G; Xiao M; Lu L
    J Agric Food Chem; 2019 Feb; 67(7):2012-2019. PubMed ID: 30678460
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Temperature impacts the multiple attack action of amylases.
    Bijttebier A; Goesaert H; Delcour JA
    Biomacromolecules; 2007 Mar; 8(3):765-72. PubMed ID: 17309295
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Mechanism of amylase action on glucoside starch bonds].
    Zherebtsov NA; Zabelina LF; Ektoba AI
    Biokhimiia; 1976 Dec; 41(12):2119-25. PubMed ID: 14726
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [On the cleavage and resorption of oligosaccharides in the small intestine. 3. Importance of glucosidic enzymes in the decomposition of malto-oligosaccharides and starch].
    Ruttloff H; Friese R; Täufel K
    Hoppe Seylers Z Physiol Chem; 1967 Jun; 348(6):705-10. PubMed ID: 5602371
    [No Abstract]   [Full Text] [Related]  

  • 45. The action of amylase on 6-amino-6-deoxyamyloses.
    Weill CE; Nickel JB; Guerrera J
    Carbohydr Res; 1975 Apr; 40(02):396-401. PubMed ID: 238739
    [No Abstract]   [Full Text] [Related]  

  • 46. Determination of the transgalactosylation activity of Aspergillus oryzae β-galactosidase: effect of pH, temperature, and galactose and glucose concentrations.
    Vera C; Guerrero C; Illanes A
    Carbohydr Res; 2011 May; 346(6):745-52. PubMed ID: 21439558
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rational design of the beta-galactosidase from Aspergillus oryzae to improve galactooligosaccharide production.
    Gao X; Wu J; Wu D
    Food Chem; 2019 Jul; 286():362-367. PubMed ID: 30827619
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Difference-spectrophotometry of the interaction of cycloheptaamylose with saccharifying alpha-amylase from Bacillus subtilis.
    Onishi M; Hatano H; Hiromi K
    J Biochem; 1973 Sep; 74(3):519-24. PubMed ID: 4202121
    [No Abstract]   [Full Text] [Related]  

  • 49. Influence of 1-butanol & cyclohexanol on the hydrolysis of amylose by alpha-amylase & beta-amylase.
    Bhide SV
    Indian J Biochem Biophys; 1980 Feb; 17(1):73-5. PubMed ID: 6161870
    [No Abstract]   [Full Text] [Related]  

  • 50. The role of tyrosine residue of bacterial liquefying alpha-amylase in the enzymatic hydrolysis of linear substrates as studied by chemical modification with acetic anhydride.
    Onishi M; Suganuma T; Hiromi K
    J Biochem; 1974 Jul; 76(1):7-13. PubMed ID: 4215804
    [No Abstract]   [Full Text] [Related]  

  • 51. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 A resolution.
    Brzozowski AM; Davies GJ
    Biochemistry; 1997 Sep; 36(36):10837-45. PubMed ID: 9283074
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [On splitting and resorption of oligosaccharides in the small intestine. II. Formation of glucose in tissue slices of rat intestine from malto-oligosaccharides].
    Ruttloff H; Friese R; Täufel K
    Hoppe Seylers Z Physiol Chem; 1965; 341(1):134-42. PubMed ID: 5876226
    [No Abstract]   [Full Text] [Related]  

  • 53. Influence of molecular structures of substrates and analogues on Taka-amylase A catalyzed hydrolyses. I. Effect of chain length of linear substrates.
    Nitta Y; Mizushima M; Hiromi K; Ono S
    J Biochem; 1971 Mar; 69(3):567-76. PubMed ID: 5551648
    [No Abstract]   [Full Text] [Related]  

  • 54. Xylooligosaccharide production by Aspergillus oryzae 13 immobilized on a nonwoven fabric.
    Tokuda H; Sato K; Nakanishi K
    Biosci Biotechnol Biochem; 1998 Apr; 62(4):801-3. PubMed ID: 9614714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Hydrolysis of amylopectin by amylolytic enzymes: structural analysis of the residual amylopectin population.
    Bijttebier A; Goesaert H; Delcour JA
    Carbohydr Res; 2010 Jan; 345(2):235-42. PubMed ID: 19962130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. [Stability of alpha-amylase with immobilization through its different functional groups].
    Kolesnik LA; Galich IP
    Ukr Biokhim Zh (1978); 1979; 51(2):154-9. PubMed ID: 36704
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A thermostable maltose-tolerant alpha-amylase from Aspergillus tamarii.
    Moreira FG; Lenartovicz V; Peralta RM
    J Basic Microbiol; 2004; 44(1):29-35. PubMed ID: 14768025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Action of porcine-pancreatic amylase on oxidized-reduced amylose of low degree of modification.
    Kainuma K; French D
    Carbohydr Res; 1982 Aug; 106(1):143-53. PubMed ID: 6181874
    [No Abstract]   [Full Text] [Related]  

  • 59. Substrate concentration dependence of the rate of maltose hydrolysis by saccharifying alpha-amylase from B. subtilis.
    Shibaoka T; Inatani T; Hiromi K; Watanabe T
    J Biochem; 1975 May; 77(5):965-8. PubMed ID: 808539
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Production of crystalline alpha-amylase by Aspergillus oryzae].
    FENIKSOVA RV; MOLODOVA GA
    Mikrobiologiia; 1961; 30():607-10. PubMed ID: 13892280
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.