These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 6322857)

  • 1. Catabolite repression of inositol dehydrogenase and gluconate kinase syntheses in Bacillus subtilis.
    Nihashi J; Fujita Y
    Biochim Biophys Acta; 1984 Mar; 798(1):88-95. PubMed ID: 6322857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis.
    Deutscher J; Reizer J; Fischer C; Galinier A; Saier MH; Steinmetz M
    J Bacteriol; 1994 Jun; 176(11):3336-44. PubMed ID: 8195089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and properties of a Bacillus subtilis mutant unable to produce fructose-bisphosphatase.
    Fujita Y; Freese E
    J Bacteriol; 1981 Feb; 145(2):760-7. PubMed ID: 6257649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification and properties of Bacillus subtilis inositol dehydrogenase.
    Ramaley R; Fujita Y; Freese E
    J Biol Chem; 1979 Aug; 254(16):7684-90. PubMed ID: 112095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis.
    Lopez JM; Thoms B
    J Bacteriol; 1977 Jan; 129(1):217-24. PubMed ID: 401492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol (iol) operon.
    Miwa Y; Fujita Y
    J Bacteriol; 2001 Oct; 183(20):5877-84. PubMed ID: 11566986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The characterization and cloning of a gluconate (gnt) operon of Bacillus subtilis.
    Fujita Y; Nihashi J; Fujita T
    J Gen Microbiol; 1986 Jan; 132(1):161-9. PubMed ID: 3011959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores.
    Otani M; Ihara N; Umezawa C; Sano K
    J Bacteriol; 1986 Jul; 167(1):148-52. PubMed ID: 3013833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereoselective oxidation of protected inositol derivatives catalyzed by inositol dehydrogenase from Bacillus subtilis.
    Daniellou R; Phenix CP; Tam PH; Laliberte MC; Palmer DR
    Org Biomol Chem; 2005 Feb; 3(3):401-3. PubMed ID: 15678175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolite repression-resistant mutants of Bacillus subtilis.
    Takahashi I
    Can J Microbiol; 1979 Nov; 25(11):1283-7. PubMed ID: 120218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catabolite repression of beta-glucanase synthesis in Bacillus subtilis.
    Krüger S; Stülke J; Hecker M
    J Gen Microbiol; 1993 Sep; 139(9):2047-54. PubMed ID: 8245831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of mutations causing gluconate kinase or gluconate permease deficiency on expression of the Bacillus subtilis gnt operon.
    Fujita Y; Fujita T
    J Bacteriol; 1989 Mar; 171(3):1751-4. PubMed ID: 2537826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Relations between catabolite repression and sporulation in Bacillus subtilis (author's transl)].
    López JM; Thoms B
    Arch Microbiol; 1976 Aug; 109(1-2):181-6. PubMed ID: 822795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of Bacillus subtilis catabolite repression by transition state regulatory protein AbrB.
    Fisher SH; Strauch MA; Atkinson MR; Wray LV
    J Bacteriol; 1994 Apr; 176(7):1903-12. PubMed ID: 8144456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Appel-Lee synthesis of glycosyl inositols, substrates for inositol dehydrogenase from Bacillus subtilis.
    Daniellou R; Palmer DR
    Carbohydr Res; 2006 Sep; 341(12):2145-50. PubMed ID: 16729989
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator.
    Fujita Y; Fujita T
    Proc Natl Acad Sci U S A; 1987 Jul; 84(13):4524-8. PubMed ID: 3037520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. FURTHER STUDIES ON THE REGULATION OF AMINO SUGAR METABOLISM IN BACILLUS SUBTILIS.
    BATES CJ; PASTERNAK CA
    Biochem J; 1965 Jul; 96(1):147-54. PubMed ID: 14343123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacillus subtilis iolU encodes an additional NADP
    Kang DM; Tanaka K; Takenaka S; Ishikawa S; Yoshida KI
    Biosci Biotechnol Biochem; 2017 May; 81(5):1026-1032. PubMed ID: 28043209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of lactate dehydrogenase synthesis in Bacillus subtilis.
    Yashphe J; Hoch JA; Kaplan NO
    Biochim Biophys Acta; 1978 Nov; 544(1):1-7. PubMed ID: 102366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catabolite repression of the Bacillus subtilis gnt operon mediated by the CcpA protein.
    Fujita Y; Miwa Y
    J Bacteriol; 1994 Jan; 176(2):511-3. PubMed ID: 8288545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.