BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 632287)

  • 1. Reconstitution and "transport specificity fractionation" of the human erythrocyte glucose transport system. A new approach for identification and isolation of membrane transport proteins.
    Goldin SM; Rhoden V
    J Biol Chem; 1978 Apr; 253(8):2575-83. PubMed ID: 632287
    [No Abstract]   [Full Text] [Related]  

  • 2. Cytochalasin B binding sites and glucose transport carrier in human erythrocyte ghosts.
    Jung CY; Rampal AL
    J Biol Chem; 1977 Aug; 252(15):5456-63. PubMed ID: 885863
    [No Abstract]   [Full Text] [Related]  

  • 3. Monosaccharide transport in protein-depleted vesicles from erythrocyte membranes.
    Zoccoli MA; Lienhard GE
    J Biol Chem; 1977 May; 252(10):3131-5. PubMed ID: 863876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoaffinity labeling of the human erythrocyte D-glucose transporter.
    Carter-Su C; Pessin JE; Mora R; Gitomer W; Czech MP
    J Biol Chem; 1982 May; 257(10):5419-25. PubMed ID: 7200092
    [No Abstract]   [Full Text] [Related]  

  • 5. The monosaccharide transport system of the human erythrocyte. Solubilization and characterization on the basis of cytochalasin B binding.
    Zoccoli MA; Baldwin SA; Lienhard GE
    J Biol Chem; 1978 Oct; 253(19):6923-30. PubMed ID: 690133
    [No Abstract]   [Full Text] [Related]  

  • 6. Glucose transport carrier of human erythrocytes. Radiation-target size of glucose-sensitive cytochalasin B binding protein.
    Jung CY; Hsu TL; Hah JS; Cha C; Haas MN
    J Biol Chem; 1980 Jan; 255(2):361-4. PubMed ID: 7356617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An experimental test for cyclic versus linear transport models. The mechanisms of glucose and choline transport in erythrocytes.
    Krupka RM; Devés R
    J Biol Chem; 1981 Jun; 256(11):5410-6. PubMed ID: 7240146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution.
    Baldwin JM; Gorga JC; Lienhard GE
    J Biol Chem; 1981 Apr; 256(8):3685-9. PubMed ID: 7194337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Asymmetrical binding of phloretin to the glucose transport system of human erythrocytes.
    Krupka RM
    J Membr Biol; 1985; 83(1-2):71-80. PubMed ID: 4039758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glucose transport carrier of human erythrocytes. Radiation target size measurement based on flux inactivation.
    Cuppoletti J; Jung CY; Green FA
    J Biol Chem; 1981 Feb; 256(3):1305-6. PubMed ID: 7192711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconstitution of D-glucose transport catalyzed by a protein fraction from human erythrocytes in sonicated liposomes.
    Kasahara M; Hinkle PC
    Proc Natl Acad Sci U S A; 1976 Feb; 73(2):396-400. PubMed ID: 1061142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochalasin B-binding proteins in rabbit erythrocyte membranes and their post-natal change in relation to the glucose carrier activity.
    Jung CY; Pinkofsky HB; Cowden MW
    Biochim Biophys Acta; 1980 Mar; 597(1):145-54. PubMed ID: 7370240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Purification of the cytochalasin B binding component of the human erythrocyte monosaccharide transport system.
    Baldwin SA; Baldwin JM; Gorga FR; Lienhard GE
    Biochim Biophys Acta; 1979 Mar; 552(1):183-8. PubMed ID: 435493
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstitution of glucose transport using human erythrocyte band 3.
    Shelton RL; Langdon RG
    Biochim Biophys Acta; 1983 Aug; 733(1):25-33. PubMed ID: 6683973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High affinity cytochalasin B binding to red cell membrane proteins which are unrelated to sugar transport.
    Lin S; Snyder CE
    J Biol Chem; 1977 Aug; 252(15):5464-71. PubMed ID: 407226
    [No Abstract]   [Full Text] [Related]  

  • 17. Cytochalasin B and the kinetics of inhibition of biological transport: a case of asymmetric binding to the glucose carrier.
    Devés R; Krupka RM
    Biochim Biophys Acta; 1978 Jul; 510(2):339-48. PubMed ID: 667049
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetry of the hexose transfer system in human erythrocytes. Comparison of the effects of cytochalasin B, phloretin and maltose as competitive inhibitors.
    Basketter DA; Widdas WF
    J Physiol; 1978 May; 278():389-401. PubMed ID: 671319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of cholesterol on the reconstituted D-glucose transport system of human erythrocyte membranes.
    Fröman G
    Tokai J Exp Clin Med; 1982; 7 Suppl():131-3. PubMed ID: 6892255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytochalasin B. A natural photoaffinity ligand for labeling the human erythrocyte glucose transporter.
    Shanahan MF
    J Biol Chem; 1982 Jul; 257(13):7290-3. PubMed ID: 7200980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.